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PREFACE

When my granddaughter Allison was born, one of the first things I
said to her was “Welcome to the universe!” It’s something my
coauthor Neil Tyson has said many times on radio and TV. Indeed it
is one of Neil’s signature sayings. When you are born, you become a
citizen of the universe. It behooves you to look around and get
curious about your surroundings.

Neil felt a call from the universe on a first visit to the Hayden
Planetarium in New York City when he was 9 years old. As a city kid,
he saw the glories of the nighttime sky for the first time displayed on
the planetarium dome and decided at that moment to become an
astronomer. Today he is the director of that institution.

In fact, we are all touched by the universe. The hydrogen in your
body was forged in the birth of the universe itself, while the other
elements in your body were made in distant, long-dead stars. When
you call a friend on your mobile phone, you should thank
astronomers. Mobile phone technology depends on Maxwell’s
equations, whose verification depended on the fact that astronomers
had already measured the speed of light. The GPS that tells your
phone where you are and helps you navigate relies on Einstein’s
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theory of general relativity, which was verified by astronomers
measuring the deflection of starlight passing near the Sun. Did you
know there is an ultimate limit to how much information can ever be
stored in a 6-inch-diameter hard drive and that it depends on black
hole physics? At a more mundane level, the seasons you experience
every year depend directly on the tilt of Earth’s axis relative to the
plane of its orbit around the Sun.

This book aims to better acquaint you with the universe in which
you live. The idea for this book started when the three of us taught
a new undergraduate course on the universe for nonscience majors
at Princeton University—for students who perhaps had never taken a
science course before. For this purpose, Neta Bahcall, our colleague
and director of undergraduate studies, selected Neil deGrasse Tyson,
Michael Strauss, and me. Neil’s genius at explaining science to
nonscientists was apparent, Michael had just discovered the most
distant quasar yet found in the universe, and I had just received the
university’s President’s Award for Distinguished Teaching. The course
was launched with great fanfare and attracted so many students that
we couldn’t hold it in our own building and had to move it to the
biggest lecture hall in the Physics Department. Neil talked about
“Stars and Planets,” Michael talked about “Galaxies and Quasars,”
and I talked about “Einstein, Relativity, and Cosmology.” The course
was mentioned in Time magazine, when Time honored Neil as one
of the 100 most influential people in the world in 2007. Among other
features of this book, you will get to know Neil as a professor, telling
you things he tells his students.
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FIGURE 0.1. The three authors, left to right: Strauss, Gott, and Tyson.
Photo credit: Princeton, Denise Applewhite

After we had taught the course for a number of years, we
decided to put its ideas down in the form of a book for readers who
hungered for a deeper understanding of the universe.

We give you a tour of the universe from an astrophysical point of
view, from the point of view of trying to understand what is going
on. We tell you how Newton and Einstein got their greatest ideas.
You know Stephen Hawking is famous. But we tell you what made
him famous. The great movie of his life story, The Theory of
Everything, won Eddie Redmayne a best actor Oscar for his
compelling portrayal of Hawking. It shows Hawking having his
greatest idea by simply staring into the fireplace and having it
suddenly come to him. We tell you what the movie left out: how
Hawking didn’t believe the work of Jacob Bekenstein, but he ended
up reaffirming it and taking it to an entirely new conclusion. And
that’s the same Jacob Bekenstein who found the ultimate limit for
how much information could be stored on your 6-inch-diameter hard
drive. It’s all connected. In this book, of all the topics in the
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universe, we focus particularly on those we are most passionate
about, and we hope our excitement will be contagious.

Much has been added to astronomical knowledge since we
began, and this book reflects that. Neil’s views on the status of Pluto
have been ratified by the International Astronomical Union, in a
historic vote in 2006. Thousands of new planets have been
discovered circling other stars. We discuss them. The standard
cosmological model, including normal atomic nuclei, dark matter, and
dark energy, is now known with exquisite accuracy, thanks to results
from the Hubble Space Telescope, the Sloan Digital Sky Survey, and
the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck
satellites. Physicists have discovered the Higgs Boson at the Large
Hadron Collider in Europe, bringing us one step closer to the hoped
for theory of everything. The Laser Interferometer Gravitational-
Wave Observatory (LIGO) experiment has made a direct detection of
gravitational waves from two inspiraling black holes.

We explain how astronomers have determined how much dark
matter there is, and how we know that it is not made of ordinary
matter (with atomic nuclei containing protons and neutrons). We
explain how we know the density of dark energy, and how we know
that it has a negative pressure. We cover current speculations on the
origin of the universe and on its future evolution. These questions
bring us to the frontiers of physics knowledge today. We have
included spectacular images from the Hubble Space Telescope, the
WMAP satellite, and the New Horizons spacecraft—showing Pluto
and its moon Charon.

The universe is awesome. Neil shows you that in the very first
chapter. This leaves many people thrilled, but feeling tiny and
insignificant at the same time. But our aim is to empower you to
understand the universe. That should make you feel strong. We have
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learned how gravity works, how stars evolve, and just how old the
universe is. These are triumphs of human thought and observation—
things that should make you proud to be a member of the human
race.

The universe beckons. Let’s begin.

J. RICHARD GOTT
Princeton, New Jersey
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1
THE SIZE AND SCALE

OF THE UNIVERSE
NEIL DEGRASSE TYSON

We begin with the stars, then ascend up and away out to the galaxy,
the universe, and beyond. What did Buzz Lightyear say in Toy Story?
“To Infinity and Beyond!”

It’s a big universe. I want to introduce you to the size and scale
of the cosmos, which is bigger than you think. It’s hotter than you
think. It is denser than you think. It’s more rarified than you think.
Everything you think about the universe is less exotic than it actually
is. Let’s get some machinery together before we begin. I want to
take you on a tour of numbers small and large, just so we can
loosen up our vocabulary, loosen up our sense of the sizes of things
in the universe. Let me just start out with the number 1. You’ve seen
this number before. There are no zeros in it. If we wrote this in
exponential notation, it is ten to the zero power, 100. The number 1
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has no zeros to the right of that 1, as indicated by the zero
exponent. Of course, 10 can be written as 10 to the first power, 101.
Let’s go to a thousand—103. What’s the metric prefix for a
thousand? Kilo- kilogram—a thousand grams; kilometer—a thousand
meters. Let’s go up another 3 zeros, to a million, 106, whose prefix is
mega-. Maybe this is the highest they had learned how to count at
the time they invented the megaphone; perhaps if they had known
about a billion, by appending three more zeroes, giving 109, they
would have called them “gigaphones.” If you study file sizes on your
computer, then you’re familiar with these two words, “megabytes”
and “gigabytes.” A gigabyte is a billion bytes. 1 I’m not convinced you
know how big a billion actually is. Let’s look around the world and
ask what kinds of things come in billions.

First, there are 7 billion people in the world.
Bill Gates? What’s he up to? Last I checked, he’s up to about 80

billion dollars. He’s the patron saint of geeks; for the first time,
geeks actually control the world. For most of human history that was
not the case. Times have changed. Where have you seen 100
billion? Well, not quite 100 billion. McDonald’s. “Over 99 Billion
Served.” That’s the biggest number you ever see in the street. I
remember when they started counting. My childhood McDonald’s
proudly displayed “Over 8 Billion Served.” The McDonald’s sign never
displayed 100 billion, because they allocated only two numerical
slots for their burger count, and so, they just stopped at 99 billion.
Then they pulled a Carl Sagan on us all and now say, “billions and
billions served.”

Take 100 billion hamburgers, and lay them end to end. Start at
New York City, and go west. Will you get to Chicago? Of course. Will
you get to California? Yes, of course. Find some way to float them.
This calculation works for the diameter of the bun (4 inches),
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because the burger itself is somewhat smaller than the bun. So for
this calculation, it’s all about the bun. Now float them across the
ocean, along a great circle route, and you will cross the Pacific, pass
Australia, Africa, and come back across the Atlantic Ocean, finally
arriving back in New York City with your 100 billion hamburgers.
That’s a lot of hamburgers. But in fact you have some left over after
you have circled the circumference of Earth. Do you know what you
do with what you have left over? You make the trip all over again,
215 more times! Now you still have some left over. You’re bored
going around Earth, so what do you do? You stack them. So after
you’ve gone around Earth 216 times, then you stack them. How high
do you go? You’ll go to the Moon, and back, with stacked
hamburgers (each 2 inches tall) after you’ve already been around
the world 216 times, and only then will you have used your 100
billion hamburgers. That’s why cows are scared of McDonald’s. By
comparison, the Milky Way galaxy has about 300 billion stars. So
McDonald’s is gearing up for the cosmos.

When you are 31 years, 7 months, 9 hours, 4 minutes, and 20
seconds old, you’ve lived your billionth second. I celebrated with a
bottle of champagne when I reached that age. It was a tiny bottle.
You don’t encounter a billion very often.

Let’s keep going. What’s the next one up? A trillion: 1012. We
have a metric prefix for that: tera-. You can’t count to a trillion. Of
course you could try. But if you counted one number every second, it
would take you a thousand times 31 years—31,000 years, which is
why I don’t recommend doing this, even at home. A trillion seconds
ago, cave dwellers—troglodytes—were drawing pictures on their
living room walls.

At New York City’s Rose Center of Earth and Space, we display a
timeline spiral of the Universe that begins at the Big Bang and
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unfolds 13.8 billion years. Uncurled, it’s the length of a football field.
Every step you take spans 50 million years. You get to the end of the
ramp, and you ask, where are we? Where is the history of our
human species? The entire period of time, from a trillion seconds
ago to today, from graffiti-prone cave dwellers until now, occupies
only the thickness of a single strand of human hair, which we have
mounted at the end of that timeline. You think we live long lives, you
think civilizations last a long time, but not from the view of the
cosmos itself.

What’s next? 1015. That’s a quadrillion, with the metric prefix
peta-. It’s one of my favorite numbers. Between 1 and 10 quadrillion
ants live on (and in) Earth, according to ant expert E. O. Wilson.

What’s next? 1018, a quintillion, with metric prefix exa-. That’s
the estimated number of grains of sand on 10 large beaches. The
most famous beach in the world is Copacabana Beach in Rio de
Janeiro. It is 4.2 kilometers long, and was 55 meters wide before
they widened it to 140 meters by dumping 3.5 million cubic meters
of sand on it. The median size of grains of sand on Copacabana
Beach at sea level is 1/3 of a millimeter. That’s 27 grains of sand per
cubic millimeter, so 3.5 million cubic meters of that kind of sand is
about 1017 grains of sand. That’s most of the sand there today. So
about 10 Copacabana beaches should have about 1018 grains of
sand on them.

Up another factor of a thousand and we arrive at 1021, a
sextillion. We have ascended from kilometers to megaphones to
McDonald’s hamburgers to Cro-Magnon artists to ants to grains of
sand on beaches until finally arriving here: 10 sextillion—

the number of stars in the observable universe.
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There are people, who walk around every day, asserting that we
are alone in this cosmos. They simply have no concept of large
numbers, no concept of the size of the cosmos. Later, we’ll learn
more about what we mean by the observable universe, the part of
the universe we can see.

While we’re at it, let me jump beyond this. Let’s take a number
much larger than 1 sextillion—how about 1081? As far as I know, this
number has no name. It’s the number of atoms in the observable
universe. Why then would you ever need a number bigger than that?
What “on Earth” could you be counting? How about 10100, a nice
round-looking number. This is called a googol. Not to be confused
with Google, the internet company that misspelled “googol” on
purpose.

There are no objects to count in the observable universe to apply
a googol to. It is just a fun number. We can write it as 10100, or if
you don’t have superscripts, this works too: 10^100. But you can
still use such big numbers for some situations: don’t count things,
but instead count the ways things can happen. For example, how
many possible chess games can be played? A game can be declared
a draw by either player after a triple repetition of a position, or when
each has made 50 moves in a row without a pawn move or a
capture, or when there are not enough pieces left to produce a
checkmate. If we say that one of the two players must take
advantage of this rule in every game where it comes up, then we
can calculate the number of possible chess games. Rich Gott did this
and found the answer was a number less than 10^(10^4.4). That’s
a lot bigger than a googol, which is 10^(10^2). You’re not counting
things, but you are counting possible ways to do something. In that
way, numbers can get very large.
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I have a number still bigger than this. If a googol is 1 followed by
100 zeros, then how about 10 to the googol power? That has a
name too: a googolplex. It is 1, with a googol of zeroes after it. Can
you even write out this number? Nope. Because it has a googol of
zeroes, and a googol is larger than the number of atoms in the
universe. So you’re stuck writing it this way: 10googol, or 1010^100 or
10^(10^100). If you were so motivated, I suppose you could
attempt to write 1019 zeros, on every atom in the universe. But you
surely have better things to do.

I’m not doing this just to waste your time. I’ve got a number
that’s bigger than a googolplex. Jacob Bekenstein invented a formula
allowing us to estimate the maximum number of different quantum
states that could have a mass and size comparable to our observable
universe. Given the quantum fuzziness we observe, that would be
the maximum number of distinct observable universes like ours. It’s
10^(10^124), a number that has 1024 times as many zeros as a
googolplex. These 10^(10^124) universes range from ones that are
scary, filled with mostly black holes, to ones that are exactly like ours
but where your nostril is missing one oxygen molecule and some
space alien’s nostril has one more.

So, in fact, we do have some uses for some very large numbers.
I know of no utility for numbers larger than this one, but
mathematicians surely do. A theorem once contained the badass
number 10^(10^(10^34)). It’s called Skewe’s number.
Mathematicians derive pleasure from thinking far beyond physical
realities.

Let me give you a sense of other extremes in the universe.
How about density? You intuitively know what density is, but let’s

think about density in the cosmos. First, explore the air around us.
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You’re breathing 2.5 × 1019 molecules per cubic centimeter—78%
nitrogen and 21% oxygen.

A density of 2.5 × 1019 molecules per cubic centimeter is likely
higher than you thought. But let’s look at our best laboratory
vacuums. We do pretty well today, bringing the density down to
about 100 molecules per cubic centimeter. How about interplanetary
space? The solar wind at Earth’s distance from the Sun has about 10
protons per cubic centimeter. When I talk about density here, I’m
referencing the number of molecules, atoms, or free particles that
compose the gas. How about interstellar space, between the stars?
Its density fluctuates, depending on where you’re hanging out, but
regions in which the density falls to 1 atom per cubic centimeter are
not uncommon. In intergalactic space, that number is going to be
much less: 1 per cubic meter.

We can’t get vacuums that empty in our best laboratories. There
is an old saying, “Nature abhors a vacuum.” The people who said
that never left Earth’s surface. In fact, Nature just loves a vacuum,
because that’s what most of the universe is. When they said
“Nature,” they were just referring to where we are now, at the base
of this blanket of air we call our atmosphere, which does indeed rush
in to fill empty spaces whenever it can.

Suppose I smash a piece of chalk against a blackboard and pick
up a fragment. I’ve smashed that chalk into smithereens. Let’s say a
smithereen is about 1 millimeter across. Imagine that’s a proton. Do
you know what the simplest atom is? Hydrogen, as you might have
suspected. Its nucleus contains one proton, and normal hydrogen
has an electron occupying an orbital that surrounds it. How big
would that hydrogen atom be? If the chalk smithereen is the proton,
would the atom be as big as a beach ball? No, much bigger. It would
be 100 meters across—about the size of a 30-story building. So



22

what’s going on here? Atoms are pretty empty. There are no
particles between the nucleus and that lone electron, flying around
in its first orbital, which, we learn from quantum mechanics, is
spherically shaped around the nucleus. Let’s go smaller and smaller
and smaller, to get to another limit of the cosmos, represented by
the measurement of things that are so tiny that we can’t even
measure them. We do not yet know what the diameter of the
electron is. It is smaller than we are able to measure. However,
superstring theory suggests that it may be a tiny vibrating string as
small as 1.6 × 10–35 meters in length.

Atoms are about 10–10 (one ten-billionth) of a meter. But how
about 10–12 or 10–13 meters? Known objects that size include
uranium with only one electron, and an exotic form of hydrogen
having one proton with a heavy cousin of the electron called a muon
in orbit around it. About 1/200 the size of a common hydrogen
atom, it has a half-life of only about 2.2 microseconds due to the
spontaneous decay of its muon. Only when you get down to 10–14 or
10–15 meters are you measuring the size of the atomic nucleus.

Now let’s go the other way, ascending to higher and higher
densities. How about the Sun? Is it very dense or not that dense?
The Sun is quite dense (and crazy hot) in the center, but much less
dense at its edge. The average density of the Sun is about 1.4 times
that of water. And we know the density of water—1 gram per cubic
centimeter. In its center, the Sun’s density is 160 grams per cubic
centimeter. But the Sun is quite ordinary in these matters. Stars can
(mis)behave in amazing ways. Some expand to get big and bulbous
with very low density, while others collapse to become small and
dense. In fact, consider my proton smithereen and the lonely, empty
space that surrounds it. There are processes in the universe that
collapse matter down, crushing it until it reaches the density of an
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atomic nucleus. Within such stars, each nucleus rubs cheek to cheek
with the neighboring nuclei. The objects out there with these
extraordinary properties happen to be made mostly of neutrons—a
super-high-density realm of the universe.

In our profession, we tend to name things exactly as we see
them. Big red stars we call red giants. Small white stars we call
white dwarfs. When stars are made of neutrons, we call them
neutron stars. Stars that pulse, we call them pulsars. In biology they
come up with big Latin words for things. MDs write prescriptions in a
cuneiform that patients can’t understand, hand them to the
pharmacist, who understands the cuneiform. It’s some long fancy
chemical thing, which we ingest. In biochemistry, the most popular
molecule has ten syllables—deoxyribonucleic acid! Yet the beginning
of all space, time, matter, and energy in the cosmos, we can
describe in two simple words, Big Bang. We are a monosyllabic
science, because the universe is hard enough. There is no point in
making big words to confuse you further.

Want more? In the universe, there are places where the gravity
is so strong that light doesn’t come out. You fall in, and you don’t
come out either: black hole. Once again, with single syllables, we
get the whole job done. Sorry, but I had to get all that off my chest.

How dense is a neutron star? Let’s take a thimbleful of neutron
star material. Long ago, people would sew everything by hand. A
thimble protects your fingertip from getting impaled by the needle.
To get the density of a neutron star, assemble a herd of 100 million
elephants, and cram them into this thimble. In other words, if you
put 100 million elephants on one side of a seesaw, and one thimble
of neutron star material on the other side, they would balance.
That’s some dense stuff. A neutron star’s gravity is also very high.
How high? Let’s go to its surface and find out.
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One way to measure how much gravity you have is to ask, how
much energy does it take to lift something? If the gravity is strong,
you’ll need more energy to do it. I exert a certain amount of energy
climbing up a flight of stairs, which sits well within the bounds of my
energetic reserves. But imagine a cliff face 20,000 kilometers tall on
a hypothetical giant planet with Earthlike gravity. Measure the
amount of energy you exert climbing from the bottom to the top
fighting against the gravitational acceleration we experience on
Earth for the whole climb. That’s a lot of energy. That’s more energy
than you’ve stored within you, at the bottom of that cliff. You will
need to eat energy bars or some other high-calorie, easily digested
food on the way up. Okay. Climbing at a rapid rate of 100 meters per
hour, you would spend more than 22 years climbing 24 hours a day
to get to the top. That’s how much energy you would need to step
onto a single sheet of paper laid on the surface of a neutron star.
Neutron stars probably don’t have life on them.

We have gone from 1 proton per cubic meter to 100 million
elephants per thimble. What have I left out? How about
temperature? Let’s talk hot. Start with the surface of the Sun. About
6,000 kelvins—6,000 K. That will vaporize anything you give it.
That’s why the Sun is gas, because that temperature vaporizes
everything. (By comparison, the average temperature of Earth’s
surface is a mere 287 K.)

How about the temperature at the Sun’s center? As you might
guess, the Sun’s center is hotter than its surface—there are cogent
reasons for this, as we’ll see later in the book. The Sun’s center is
about 15 million K. Amazing things happen at 15 million K. The
protons are moving fast. Really fast, in fact. Two protons normally
repel each other, because they have the same (positive) charge. But
if you move fast enough, you can overcome that repulsion. You can
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get close enough so that a brand-new force kicks in—not the
repulsive electrostatic force, but an attractive force that manifests
over a very short range. If you get two protons close enough, within
that short range they will stick together. This force has a name. We
call it the strong force. Yes, that’s the official name for it. This strong
nuclear force can bind protons together and make new elements out
of them, such as the next element after hydrogen on the periodic
table, helium. Stars are in the business of making elements heavier
than those they are born with. And this process happens deep in the
core. We’ll learn more about that in chapter 7.

Let’s go cool. What is the temperature of the whole universe? It
does indeed have a temperature—left over from the Big Bang. Back
then, 13.8 billion years ago, all the space, time, matter, and energy
you can see, out to 13.8 billion light-years, was crushed together.
The nascent universe was a hot, seething cauldron of matter and
energy. Cosmic expansion since then has cooled the universe down
to about 2.7 K.

Today we continue to expand and cool. As unsettling as it may
be, the data show that we’re on a one-way trip. We were birthed by
the Big Bang, and we’re going to expand forever. The temperature is
going to continue to drop, eventually becoming 2 K, then 1 K, then
half a kelvin, asymptotically approaching absolute zero. Ultimately,
its temperature may bottom out at about 7 × 10–31 K because of an
effect discovered by Stephen Hawking that Rich will discuss in
chapter 24. But that fact brings no comfort. The stars will finish
fusing all their thermonuclear fuel, and one by one they will die out,
disappearing from the sky. Interstellar gas clouds do make new
stars, but of course this depletes their gas supply. You start with gas,
you make stars, the stars evolve during their lives, and leave behind
a corpse—the dead end-products of stellar evolution: black holes,
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neutron stars, and white dwarfs. This keeps going until all the lights
of the galaxy turn off, one by one. The galaxy goes dark. The
universe goes dark. Black holes are left, emitting only a feeble glow
of light—again predicted by Stephen Hawking.

And the cosmos ends. Not with a bang, but with a whimper.
Way before that happens, the Sun, to talk about size, will grow.

You don’t want to be around when that happens, I promise you.
When the Sun dies, complicated thermal physics happens inside,
forcing the outer surface of the Sun to expand. It will get bigger and
bigger and bigger and bigger, as the Sun in the sky slowly occupies
more and more and more of your field of view. The Sun eventually
engulfs the orbit of Mercury, and then the orbit of Venus. In 5 billion
years, the Earth will be a charred ember, orbiting just outside the
Sun’s surface. The oceans will have already come to a rolling boil,
evaporating into the atmosphere. The atmosphere will have been
heated to the point that all the atmospheric molecules escape into
space. Life as we know it will cease to exist, while other forces, after
about 7.6 billion years, cause the charred Earth to spiral into the
Sun, vaporizing there.

Have a nice day!
What I’ve tried to give you is a sense of the magnitude and

grandeur of what this book is about. And everything that I’ve just
referenced here appears in much more depth and detail in
subsequent chapters. Welcome to the universe.
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2
FROM THE DAY AND NIGHT

SKY
TO PLANETARY ORBITS

NEIL DEGRASSE TYSON

In this chapter, we will cover 3,000 years of astronomy. Everything
that happened from antiquity, the time of the Babylonians, up until
the 1600s. This is not going to be a history lesson, because I’m not
going to cover all the details of who thought and who discovered
what first. I just want to give you a sense of what was learned
during all that time. It begins with people’s attempts to understand
the night sky.

Here’s the Sun (figure 2.1). Let’s draw Earth next to it; it’s not
drawn to scale in either size or distance, but is simply meant to
illustrate certain features of the Sun–Earth system. Way out, of
course, are the stars in the sky. I’m going to pretend that the sky is
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just stars, dots of light on the inside of a big sphere, which will make
some other things easier to describe.

Earth, as you probably know, spins on an axis, and that axis is
tilted relative to our orbit around the Sun. That angle of tilt is 23.5°.
How long does it take for us to spin once? A day. How long to go
around the Sun once? A year. Thirty percent of the general public in
America who were asked that second question got the wrong
answer.

A spinning object in space is actually quite stable, so that, as it
orbits, its orientation in space remains constant. If we move the
Earth around the Sun, from June 21 to December 21, as it comes
around the other side of the Sun (to the right in figure 2.1), Earth
will still preserve that spin orientation in space—its axis points in that
same direction for the entire journey around the Sun. This makes for
some interesting features. For example, on June 21, a vertical line
perpendicular to the plane of the Earth’s orbit divides the Earth into
day and night. What can you say about the part of the Earth to the
left of that line, away from the Sun? That’s nighttime. But on
December 21, when Earth is on the opposite side of its orbit,
nighttime is now on the opposite side—to the right in the illustration.
All the people on Earth who look up in the nighttime can see only
that part of the sky opposite the Sun. The nighttime sky on June 21
is different—the stars on the far left—from the nighttime sky you see
on December 21—the stars on the far right. During the summer
nights, we see the “summer” constellations, such as the Northern
Cross and Lyra, whereas during the winter nights, we see the
“winter” constellations, such as Orion and Taurus.
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FIGURE 2.1. Earth circles the Sun, providing different nighttime views as the
seasons change. Because of the tilt of Earth’s axis relative to its orbit, on June 21,
the Northern Hemisphere receives the Sun’s rays more directly, while Australia and
the entire Southern Hemisphere receive them obliquely. On December 21, people
south of the Antarctic Circle see daylight for 24 hours as they circle around the
South Pole as Earth rotates. Credit: J. Richard Gott

Let’s look at something else. On December 21, if it’s nighttime to
the right of the vertical line and Earth turns on its axis, what about
the upside-down people standing in Antarctica, south of the
Antarctic circle? They go around the South Pole. Does a person there
see darkness? Nope. On December 21, a person there sees 24 hours
without dark—24 hours of sunlight—as Earth rotates. There is no
nighttime for anybody within the entire South Polar cap of Earth on
that day. That’s true for anyone between the Antarctic Circle and the
South Pole. Following this argument, if I come up to the North Pole
and I watch people North of the Arctic circle revolve around the



30

North Pole—Santa Claus and his friends—they never rotate into the
daytime side of Earth. For them, on December 21, there are 24
hours of darkness. As you might suspect, on June 21, the reverse
happens: it’s the people south of the Antarctic Circle who have no
day at this time of the year and the people in the Arctic who have no
night.

Let’s observe from Princeton, New Jersey—it’s close to New York
City, but with no skyscrapers or bright city lights to interfere with the
view. The town’s latitude on Earth is about 40° North. At dawn on
June 21, the Northern Hemisphere rotates New Jersey into daytime,
receiving quite direct sunlight, whereas the sunlight hitting the
Southern Hemisphere is rather oblique to Earth’s surface.

Noon is when the Sun reaches its highest point in the sky. Did
you know that nowhere in continental United States is the Sun ever
directly overhead at any time of day, on any day of the year? Odd
because if you grab people in the street and ask, “Where is the Sun
at 12 noon?” most will answer, “It’s directly overhead.” In this case
and in many others, people simply repeat the stuff they think is true,
revealing that they’ve never looked. They’ve never noticed. They’ve
never conducted the experiment. The world is full of stuff like that.
For example, what do we say happens to the length of daylight in
winter? “The days get shorter in the winter, and longer in the
summer.” Let’s think about that. What’s the shortest day of the year?
December 21, which is the solstice and also the first day of winter in
the Northern Hemisphere. If the first day of winter is the shortest
day of the year, what must be true for every other day of winter?
They must get longer. So days get longer in the winter, not shorter.
You don’t need a PhD or a grant from the National Science
Foundation to figure that out. Hours of daylight get longer during
the winter and shorter during the summer.
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What’s the brightest star in the nighttime sky? People say the
North Star. Have you ever looked? Most haven’t. The North Star
(also known as Polaris) is not in the top 10. It’s not in the top 20. It’s
not in the top 30. It’s not even in the top 40. Australia sits too far to
the south for anybody there to see the North Star. They don’t even
have a South Pole star to look at. And while we’re talking celestial
hemispheres, don’t ever be jealous of the constellations in the
southern sky. Take the Southern Cross; you may have heard about
it. People write songs about it. But did you know that the Southern
Cross is the smallest constellation out of all 88 of them? A fist at
arm’s length covers the entire constellation completely. Meanwhile,
the four brightest stars of the Southern Cross make a crooked box.
There is no star in the middle to indicate the center of the cross. It’s
more accurately thought of as the Southern Rhombus. In contrast,
the Northern Cross covers about 10 times the area in the sky and
has six prominent stars—it looks like a cross, with one star in the
middle. In the North we’ve got some great constellations.

The North Star is actually the 45th brightest star in the nighttime
sky. So do me a favor and grab people in the street, ask them that
question, and then set them straight. If you must know, the
brightest star in the nighttime sky is Sirius, the Dog Star.

Now let’s compare what happens to the sunlight at two locations
on Earth. Look at the ground at noon in Princeton on June 21—
sunlight hits it from a very high angle (see figure 2.1). The two
parallel rays traveling from the Sun hit Princeton only a short
distance apart on the ground. The ground at Sydney, Australia, at
noon takes in a similar pair of rays, except that the rays are coming
in at a much lower angle and are spread much farther apart on the
ground. What’s going on here? Which place is getting its ground
heated more efficiently? Princeton, of course. The energy impinging
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on Princeton’s ground is more concentrated, because of how directly
the rays intersect Earth’s surface, making Princeton’s ground hotter.
It’s summertime in Princeton on June 21. At this same time of year,
it’s winter in Sydney, Australia. The reverse will apply 6 months later
on December 21.

The Sun heats the ground; the ground heats the air. The Sun
does not appreciably heat the air itself, which is transparent to most
of the energy that comes from the Sun. The Sun’s energy peaks in
the visible part of the spectrum, and you already know that you can
see the Sun through the atmosphere. From this we conclude the
obvious fact that the Sun’s visible light is not being absorbed by the
air, otherwise, you wouldn’t see the Sun at all. If you are indoors in a
room with no windows, you can’t see the Sun, because the roof of
your building is absorbing the visible light from the Sun. You must
either look out a transparent window or go outside to see the Sun.
So, in sequence, light from the Sun passes through the transparent
air and hits the ground. The ground absorbs the light from the Sun,
and then reradiates that energy as invisible infrared light, which the
atmosphere can and does absorb—we’ll talk more about these other
parts of the spectrum in chapter 4.

The ground absorbs visible light from the Sun, gets hotter, and
then the ground heats the air through the infrared energy it emits.
This doesn’t happen instantaneously. It takes time. But how much
time? What’s the hottest time of day? It’s not 12 noon—the time of
peak ground heating. The hottest time of day is never 12 noon. It’s
always a few hours later because of this effect: 2 pm, 3 pm. Even as
late as 4 pm in some places.

So that’s summertime in the Northern Hemisphere. In summer
the North Pole of Earth’s axis tilts toward the Sun, and of course this
is winter for those in the Southern Hemisphere. For the same reason
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that the hottest time of day is after 12 noon, the hottest time of year
in the Northern Hemisphere is after June 21. That’s why the season
of summer starts on June 21, and it gets hotter after that. Similarly,
December 21 is the start of winter in the Northern Hemisphere, and
it gets colder after that.

Three months later, on March 21, spring starts. Every part of
Earth rotates both into sunlight and out of sunlight on the first day
of Northern Hemisphere spring (March 21) and on the first day of
Northern Hemisphere fall (September 21). So everybody on Earth
gets equal amounts of darkness and lightness on those two days—
the equinoxes.

Earth’s North Pole points toward Polaris, the North Star. A cosmic
coincidence? Not really, because we don’t point exactly there. You
can fit 1.3 full-moon widths between the actual spot in the sky
where our axis points (the North Celestial Pole) and the position of
Polaris.

Let’s go back to Princeton, as shown in figure 2.2. Standing there
at night, you’ll see any star on one side of the sky at that instant. In
the figure, these stars are marked “Stars visible above Princeton’s
horizon.” Princeton’s horizon is drawn—this line is tangent to the
surface of Earth where you’re standing. When you look up, you’ll see
stars making circles around Polaris, as Earth turns (shown on the
right in figure 2.2). (Polaris is so close to the North Celestial Pole
that it barely moves.) So there’s a cap in the sky where these stars
make circles around Polaris but never actually set below your
horizon. These are called circumpolar stars.

Suppose you look at a star farther away from Polaris. That star
sets, then comes around and rises again. That’s what the sky looks
like, the view from Earth. One of the more familiar asterisms (star
patterns) of the night sky is the Big Dipper, well-known because its
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stars are bright and it goes around Polaris (see figure 2.2). It dips
down, just skimming the horizon (as seen from Princeton), and then
comes back up again. Anything much farther from Polaris than the
Big Dipper actually sets. How high is Polaris, in angle, as seen from
Princeton? We can figure this out. First, let’s say we have gone to
visit Santa Claus at the North Pole. Where is Polaris in the sky? If
you’re visiting Santa Claus, Polaris will be (almost directly) straight
overhead. It’s always straight overhead there. A star halfway up in
the sky as seen from the North Pole circles Polaris as Earth turns,
always staying above the horizon. A star right on the horizon circles
along the horizon, so every star you can see stays above the
horizon. No star rises, no star sets; they all circle Polaris overhead,
and you see the entire Northern Hemisphere of the sky. That’s
Santa’s view.
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FIGURE 2.2. Nighttime view of the sky from Princeton (at 40° North latitude).
Polaris stays stationary, 40° above the northern horizon. The Big Dipper revolves
counterclockwise around it. Credit: J. Richard Gott

What’s the latitude of the North Pole? Ninety degrees. What’s the
altitude of Polaris from the horizon as seen from the North Pole? It’s
90°—the same number. That’s not a coincidence. Polaris is 90° up,
and you’re at 90° latitude. Let’s go down to the equator. What’s the
latitude of the equator? Zero degrees. Polaris is now on the horizon,
0° up. What’s my latitude in Princeton? Forty degrees. So, from
Princeton, the altitude of Polaris is 40° above the horizon.

People who navigate by the stars know that the altitude of
Polaris you observe is equal to your latitude on Earth. Christopher
Columbus set sail at a fixed latitude that he maintained for his entire
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journey across the Atlantic Ocean. Go back and look at his maps.
That’s how they navigated; they kept at that latitude by keeping
Polaris at the same altitude above the horizon during the trip.

Did you ever play with a top when you were a kid, and watch the
top wobble? Earth wobbles. We are a spinning top, under the
influence of the gravitational tug from the Sun and Moon. We
wobble. The time it takes to make one complete wobble is 26,000
years. We rotate once in a day and wobble once in 26,000 years.
That has an interesting consequence. First, consider the sphere of
stars that I drew around the solar system. As Earth moves around
the Sun, the Sun occupies a different place against the background
of stars. On June 21, in our earlier figure 2.1, the Sun sits between
us and the stars on the far right, which means that the Sun passes
in front of those stars as seen by us on June 21. But on December
21, the Sun is between us and the stars to the far left. In between
times, the Sun occupies a place in front of different sets of stars
throughout the year, as it circles the sky. Long ago, when most of
the world was illiterate, when there was no evening television, no
books or internet, people put their culture onto the sky. Things that
mattered in their lives. The human mind is very good at making
patterns where none really exist. You can easily pick patterns out of
random assortments of dots. Your brain says, “I see a pattern.” You
can try this experiment: if you’re good at programming a computer,
take dots and place them randomly on a page. Take about a
thousand dots, look at them, and you may think, “Hey, I see . . .
Abraham Lincoln!” You’ll see stuff. In a similar way, these ancient
people put their culture on the sky when they had no other idea
what was going on. They didn’t know what the planets were doing;
they didn’t understand laws of physics. They said, “Hmm! The sky is
bigger than I am—it must influence my behavior.” So they supposed,
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“There’s a crustacean-looking constellation of stars over here, and
it’s got some personality traits; the Sun was in that part of the sky
when you were born. That must have something to do with why
you’re so weird. And then over here we’ve got some fishes, and over
there we’ve got some twins. Because we don’t have HBO, let’s
weave our own storylines and pass these stories on from person to
person.” In so doing, ancient peoples laid out the zodiac, the
constellations in front of which the Sun appears to move throughout
the year.

There were twelve of these zodiac constellations; you know them
all—Libra, Scorpio, Aries, and so on. And you know them because
they’re in nearly every daily news feed. Some person you’ve never
met makes money telling you about your love life. Let’s try to
understand that. First of all, it’s not really twelve constellations that
the Sun moves through, it’s thirteen. They don’t tell you that,
because they couldn’t make money off of you if they did. Do you
know what the thirteenth constellation of the zodiac is? Ophiuchus.
It sounds like a disease, as in: “Do you have Ophiuchus today?” I
know you know what your sign is, so don’t lie and say, “I never read
my horoscope.” Most Scorpios are actually Ophiuchans, but we don’t
find Ophiuchus in the astrology charts.

Well, let’s keep this up for a minute. When did they lay out the
zodiac? It was encoded 2,000 years ago. Claudius Ptolemy published
maps of it. Two thousand years is 1/13 of 26,000 years. Almost
1/12. Do you realize that because of Earth’s wobble (we call it
precession, the official term), the month of the year in which the
Sun is seen against a particular constellation in the zodiac shifts?
Every single zodiacal constellation that has been assigned to the
dates identified in the newspapers is off by an entire month. So,
Scorpios and Ophiuchans are currently Librans.
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Therein lies the greatest value of education. You gain an
independent knowledge of how the universe works. If you don’t
know enough to evaluate whether or not others know what they’re
talking about, there goes your money. Social anthropologists say
that state lotteries are a tax on the poor. Not really. It’s a tax on all
those people who didn’t learn about mathematics, because if they
did, they would understand that the probabilities are against them,
and they wouldn’t spend a dime of their hard-earned money buying
lottery tickets.

Education is what this book is all about. Plus a dose of cosmic
enlightenment.

Let’s discuss the Moon, and then get straight to Johannes Kepler
and then to my man, Isaac Newton, whose home I visited when
filming Cosmos: A Spacetime Odyssey.

But first, we’ve got Earth going around the Sun, and of course
we have the Moon going around Earth, so let’s show that in figure
2.3. We put the Sun way off in the distance to the right and Earth in
the center of the diagram, and we show the Moon at different
positions as it circles Earth. We are looking down on the north pole
of the Moon’s orbit, as sunlight comes in from the right.

Both Earth and the Moon are always—at all times—half
illuminated by the Sun. If you’re standing on Earth, looking at the
Moon when it is opposite the Sun, what do you see? What phase is
the Moon? Full. The big pictures in figure 2.3 show the appearance
of the Moon as seen from Earth at each point in its orbit.
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FIGURE 2.3. The Moon’s phases as it circles Earth. The Sun, at right, always
illuminates half of Earth and half of the Moon. The diagram shows the sequence
(counterclockwise) of positions the Moon occupies as it orbits Earth. We are
looking down on the orbit from the north. The Moon always keeps the same face
toward Earth. Notice that at new moon, its back side, never seen from Earth, is
illuminated. The large photographs show the appearance of the Moon at each
position as seen from Earth. Photo credit: Robert J. Vanderbei

Why don’t we have a lunar eclipse every month, when Earth is
between the Sun and Moon like this? It is because the Moon’s orbit
is tipped at about 5° relative to Earth’s orbit around the Sun. So, in
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most months, the Moon passes north or south of Earth’s shadow in
space, preserving our normal view of the full Moon. Once in a while,
when the Moon is full as it crosses the plane of Earth’s orbit, it will
pass into Earth’s shadow, and we have lunar eclipse.

Now let the Moon continue 90° counterclockwise in its orbit. The
Moon is now in third-quarter phase. Colloquially known as half-Moon
—you see the moon half illuminated. Bring the Moon 90° further
along, counterclockwise in its orbit, and the Moon passes between
Earth and the Sun. Only the side of the Moon facing the Sun is lit up
and you can’t see that, so when standing on Earth, you can’t see the
Moon at all. We call it new Moon. The Moon usually passes north or
south of the Sun, during this phase. Occasionally, when it passes
directly in front of the Sun, we get a solar eclipse.

So far, we have full Moon, third-quarter Moon, and new Moon.
Come around another 90°, and we get first-quarter Moon, when it is
half illuminated again. We also have in-between phases. Crossing
from new Moon to first-quarter Moon, what do you see? Only a little
smidgen. A crescent. It’s called a waxing crescent Moon, because it
grows thicker every day. And just before new Moon, we get a
waning crescent. These crescents face opposite directions as the
Moon shrinks and then grows again.

Between first-quarter and full Moon we have something called
waxing gibbous. It’s a pretty awkward looking phase, and is almost
never drawn by artists, even though half the time we ever see the
Moon it’s in a gibbous phase—not quite full, not quite a quarter
Moon. If artists were drawing the sky randomly throughout the year,
we might expect to see a gibbous Moon half the time in their work,
yet they typically choose to draw either a crescent Moon or a full
Moon. They are not capturing the full reality that lay in front of
them.
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Of course, this entire cycle takes a month, formerly known as a
“moonth.” If the full Moon is opposite the Sun, what time of day
does it rise? If it is opposite the Sun and the Sun is setting, then we
conclude the full Moon is rising, at sunset. And if the Sun is rising,
the full Moon is setting.

The situation is different at other times of the month. When the
third-quarter Moon is high in the sky, the Sun is rising. Notice in the
diagram, where Earth is rotating counterclockwise, you are getting
rotated into sunlight when the third-quarter Moon is high in the sky.
Imagine taking your brain and your eyes into that picture, looking
around, and then stepping back in the real world, to check your
result.

I have an app on my computer, such that every time I bring up
the desktop, the Moon is there, showing its phase, day by day.
That’s my lunar clock. It connects me to the universe even when I’m
staring at my computer screen.

Let’s get back to the solar system—mid-to-late 1500s. In
Denmark, there lived a wealthy astronomer named Tycho Brahe. The
crater Tycho on the Moon is named after him.

I spent an hour once with someone who was native to Denmark,
learning how to pronounce this astronomer’s name correctly: tī’kō
brä. I worked hard on that. But of course in America, we pronounce
it however it looks to us.

Tycho Brahe cared a lot about the planets, enough to keep track
of them. He built the best naked-eye instrument of the day,
maintaining the most accurate measurements of planetary positions
ever. Telescopes were not invented until 1608, so Tycho used
sighting instruments, while writing down the positions of stars on
the sky and of planets as a function of time. Tycho had an enormous
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database, and a brilliant assistant, the German mathematician
Johannes Kepler.

Kepler took the data, and he figured stuff out. Kepler said to
himself, “I understand what the planets are doing. In fact I can
create laws that describe exactly what the planets are doing.” Before
Kepler, the organization of the universe was plain and obvious:
“Look, the stars revolve around us. The Sun rises and sets. The
Moon rises and sets. We must be at the center of the universe.” This
not only felt good to believe, it also looked that way. It stoked the
human ego, and the evidence supported it, so no one doubted it—
until the Polish astronomer Nicolaus Copernicus came along. If Earth
were in the middle, what are the planets doing? You look up, and
from day to day you watch Mars move against the background stars.
Hmm. Right now it’s slowing down now. Oh wait, it stopped. Now it’s
going backward (that’s called retrograde motion), then it’s going
forward again. Why should it do that?

Copernicus wondered—if the Sun were in the middle, and Earth
went around the Sun, what then? Well, these forward and backward
motions get explained in a snap. The Sun is in the middle, Earth
goes around the Sun in an orbit, like a racecar going around a
racetrack. Mars, the next planet out from the Sun, orbits more
slowly, like a slower racecar in an outer lane. When Earth passes
Mars on the inside track, Mars seems to be going backward in the
sky for a while. If you are in the fast lane on the highway and pass a
slower car in the next lane, that car appears to drift backward
relative to you. If you put the Sun in the middle, and made Earth
and Mars go around the Sun in simple circular orbits, it explained the
retrograde motion; it explained what was going on in the nighttime
sky. Planets farther from the Sun orbited more slowly. Copernicus
published all this in a tome called De Revolutionibus orbium
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coelestium. If you try to buy the first edition of that book at auction,
it will cost you over two million dollars, as it is one of the most
important books ever written in human history.

It was published in 1543, and it got people thinking. Copernicus
had been afraid to publish the book at first, and had been showing
his manuscript to colleagues privately. You couldn’t just start saying
to everyone that Earth was no longer in the center of universe. The
powerful Catholic Church had other ideas about things, asserting
that Earth was in the center.

Aristotle had said so. In ancient Greece, Aristarchus had correctly
deduced that Earth orbited the Sun—but Aristotle’s view won out,
and the church still subscribed to it, since it was consistent with
Scripture. So, when did Copernicus publish his book? When he lay
on his deathbed. You can’t be persecuted when you’re dead. He
reintroduced the Sun-centered universe, called the heliocentric
model.

“Helio-” means Sun. Before then, we had geocentric models.
That came from Aristotle, Ptolemy, and later, by decree, the church.

And then came Kepler. Kepler, who agreed with Copernicus, up to
a point. Copernicus invoked orbits that were perfect circles. But
because these didn’t quite match the observed motions of the
planets, Copernicus had adjusted them by adding smaller epicyclic
circles (as Ptolemy had done as well). Still, they didn’t exactly match
the positions of the planets in the sky. Kepler figured that the
Copernican model needed fixing. And from the data—planetary
position measurements over time—left to him by Tycho Brahe, he
deduced three laws of planetary motion. We call them Kepler’s laws.

The first one says: Planets orbit in ellipses, not circles (see figure
2.4). What’s an ellipse? Mathematically, a circle has one center, and
an ellipse sort of has two centers: we call them foci. In a circle, all
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points are equidistant from the center, whereas in an ellipse, all
points have the same sum of distances to the two foci. In fact, a
circle is the limiting case of an ellipse, in which the two foci occupy
the same spot. An elongated ellipse has foci that are far apart. As I
bring the foci together, I get something that more closely resembles
a perfect circle.

According to Kepler, planets orbit in ellipses with the Sun at one
focus. This is already revolutionary. The Greeks said, if the universe
is divine, it must be perfect, and they had a philosophical sense of
what being perfect meant. A circle is a perfect shape: every point on
a circle is the same distance from its center; that’s perfection. Any
movement in the divine universe must trace perfect circles. Stars
move in circles, they thought. This philosophy had endured for
thousands of years. Then here comes Kepler saying, no, people,
they are not circles. I’ve got the data, left to me by Tycho, to show
they’re ellipses.

He further showed that as planets orbit, the speed of a planet
varies with its distance from the Sun. Imagine an orbit that is a
perfect circle. There’s no reason for the speed to be any different on
one part of the circle than another; the planet should just keep the
same speed. But not so with the ellipse. Where would the planet
have the most speed? As you might suspect, when the planet is
closest to the Sun. Kepler found that a planet travels fast when it is
close to the Sun and more slowly when it is farther away.
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FIGURE 2.4. Kepler’s Laws. The quantity a is the semi-major axis, half the long
diameter of the elliptical orbit. For a circular orbit, with zero eccentricity, the semi-
major axis is the same as the radius. Credit: J. Richard Gott

Thinking about the problem geometrically, Kepler said, “let’s
measure how far the planet goes, for example, in a month.” When it
is close to the Sun and moving fast, in a month it will sweep out a
certain area of its orbit, in a stubby, fat fan (see figure 2.4). Call this
area A1. Let’s do that same experiment in another part of the orbit,
when it is farther away from the Sun. Kepler observed that it is
moving more slowly when it is farther away, and therefore it’s not
going to travel as far in the same amount of time. As it travels a
shorter distance, it will trace out a long, thin, fan-shaped area, A2, in
the same 1-month period. Kepler was clever enough to notice that
the area it swept out in a month was the same whether it was close
or far from the Sun: A1 = A2. He therefore made a second law:
Planets sweep out equal areas in equal times.

This has a fundamental derivation, which comes about from the
conservation of angular momentum. If you’ve never seen that term
before, you can understand it intuitively.

Ice skaters use it. Notice how spinning figure skaters start with
their arms out. What do they do? They pull their arms in, shortening
the distance between their arms and their axis of rotation, and their
rotation speeds up in response. As the planet on an elliptical orbit
moves closer to the Sun, shortening its distance to the Sun, it
speeds up.

We call it conservation of angular momentum. Kepler didn’t have
this vocabulary available to him at the time. But that is, in fact, what
he had found.

Kepler’s third law was brilliant, just brilliant (see figure 2.4
again). It took him a long time. The first two laws he just banged
right out, practically overnight. The third law took him 10 years, and
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he struggled with it. He was trying to figure out a correspondence
between the distance of a planet from the Sun and the time it takes
to go around the Sun, its orbital period. The outer planets take
longer to make a complete orbit than the inner planets do.

How many planets were then known? Mercury; Venus; Earth;
Mars; Jupiter; and everybody’s favorite planet, Saturn.

Third graders used to name Pluto as their favorite planet—which
put me on their bad list when, at the Rose Center for Earth and
Space, we downgraded Pluto’s planetary status to that of an ice ball
in the outer solar system.

The Greek word planetos meant “wanderer.” To the ancient
Greeks, Earth was not considered a planet, because we were at the
center of the universe. And the Greeks recognized two other planets
I haven’t listed; what would they be? They were also moving against
the background stars: the Sun and the Moon. By the definition from
ancient Greece, these were the seven planets. And the seven days of
the week owe their names to the seven planets or the gods related
to them. Some are obvious, like Sunday and Monday. Saturday is
Saturn-day. You have to go to other languages to get the rest; we
have Frigga for Friday, for example. Frigga (or sometimes Freyja)
was the Norse goddess associated with Venus.

At last, Kepler figured out an equation. It’s the first equation of
the cosmos.

Kepler started by measuring all distances in Earth–Sun units.
We call these Astronomical Units, or AU. The distance of a planet

from the Sun varies with time. An ellipse is a flattened circle; it has a
long axis and a short axis, which are called the major and minor
axes, respectively. Kepler (brilliantly) figured out that he should take
half the major axis of its orbit as his measure of a planet’s distance
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from the Sun. We call this the semi-major axis; it’s the average of
the planet’s maximum and minimum distances from the Sun.

And if we measure time in Earth-years, we have an equation that
was the dawn of our power to understand the cosmos. If we use the
symbols P, a planet’s orbital period in Earth-years, and a, the
average of the planet’s minimum and maximum distances from the
Sun in AU, we get:

P2 = a3,

Kepler’s third law. Let’s see if that works for Earth. Let’s try out
the equation. Earth has period 1. And its average min-max distance
is 1. So the equation gives 12 = 13. Or 1 = 1. It works. That’s good.

If this is a Solar-System-wide law, it should work for any planet
(or other object orbiting the Sun) that was known then, or would
later be discovered. How about Pluto? Kepler didn’t know about
Pluto. Let’s do Pluto. Pluto’s average min-max distance from the Sun
is 39.264 AU. So the law says P2 = 39.2643. What’s 39.264 cubed?
It’s 60,531.8. You can check that on a calculator. The orbital period P
has to equal the square root of 60,531.8, which is 246.0, rounded to
four digits. What is the actual period for Pluto in its orbit? 246.0
years.

Kepler was badass.
When Isaac Newton invented the universal law of gravitation, he

invoked P2 = a3 to figure out how gravitational attraction fell off with
distance. It fell off like one over the square of the distance. To arrive
at his answer, he used calculus—which, conveniently, he had just
invented. Newton generalized Kepler’s law to find a law that no
longer applied to just the Sun and planets. It applied to any two
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bodies in the universe, based on a newly revealed gravitational force
attracting them toward each other given by:

F = Gmam b/r
2

G is a constant, ma and m b are the masses of the two bodies,
and r is the distance between their two centers.

From that equation, you can derive Kepler’s third law, P2 = a3, as
a special case. You can also derive Kepler’s first and second laws:
that the general orbit of a planet around the Sun is an ellipse with
the Sun at one focus, and that a planet sweeps out equal areas in
equal times! That’s how powerful Newton’s law of gravitation is, and
it’s even bigger than this. It is the entire description of the force of
gravity between any two objects any place in the universe, no
matter what kinds of orbit they have. Newton expanded our
understanding of the cosmos and came out with a description of the
planets that went far beyond anything Kepler imagined. Newton
derived this formula before he turned 26. Newton discovered the
laws of optics, labeled the colors of the spectrum, and he
determined that amazingly, the colors of the rainbow, when
combined, gave you white light. He invented the reflecting
telescope. He invented calculus. He did all this.

The next chapter is all about him.
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3
NEWTON’S LAWS

MICHAEL A. STRAUSS

Copernicus made the great breakthrough of explaining planetary
motions in terms of the heliocentric universe, by placing the Sun at
the center of what we now call the solar system. The various
planets, including Earth, are all moving in orbits around the Sun. We
are sitting on a moving platform. To figure out how fast Earth is
going, we need to determine how far it goes in a specific interval of
time; its speed is then that distance divided by that time.

As we saw in chapter 2, Kepler showed that Earth’s orbit is an
ellipse. In fact, the orbits of most of the planets in our solar system
are close to circles, so we will take the approximation, for the time
being, that Earth is moving in a circle, around which it travels in a
year. The radius of that circle, the distance from the Sun to Earth, is
a quantity that we find ourselves using constantly in astronomy. As
described in the last chapter, it is officially named the Astronomical
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Unit, or AU, for short. One AU is approximately 150 million
kilometers, or 1.5 × 108 km.

We thus go around the circumference of a circle 150 million km
in radius in one year. The circumference of a circle is 2π times its
radius. Everyone knows that π is approximately 3. That’s the kind of
approximation astronomers like to use when making rough
estimates. We need to divide the circumference by the time, which is
1 year.

We would like to express that year in seconds, which will be
useful for present purposes. The number of seconds in a year is 60
(seconds in a minute), times 60 (minutes in an hour), times 24
(hours in a day), times 365 (days in a year). You could multiply that
out on a calculator, but recall that, in chapter 1, Neil said that he
drank champagne on his billionth second when he was about 31
years old. Thus, a year is about 1/30 of a billion, which is about 30
million seconds. We will write this as approximately 3.0 × 107

seconds in a year.
Putting this all together, we find that the speed at which Earth is

orbiting the Sun is 2πr/(1 year) = 2 × 3 × (1.5 × 108 km)/(3 × 107

sec) = 30 km/sec. That’s how fast we are going around the Sun
right now. We are trucking! We think of ourselves as sitting still,
which may explain why it was so natural for the ancients to imagine
that they were at the center of the universe. It seemed so obvious.
But in fact there is a great deal of motion going on. Earth is rotating
on its axis once a day. It is going around the Sun once a year,
traveling at 30 km/sec. We’ll see in Part II of this book that the Sun
is moving as well (carrying Earth and the other planets with it) in a
variety of additional motions.

Copernicus told us that the various planets are orbiting the Sun.
Kepler used Tycho Brahe’s data to determine the orbits of the



52

various planets and learn about their properties. As mentioned in
chapter 2, he abstracted three laws from these orbits. Isaac Newton,
one of the greatest heroes of our story, was able to deduce from
Kepler’s third law that gravity was a radial force between pairs of
objects, proportional to one over the square of the distance between
them.

Newton was perhaps the greatest physicist, maybe the greatest
scientist of any type, who ever lived. He made an amazing number
of fundamental discoveries. He wanted to understand how
everything moved: not just the planets orbiting the Sun, but a ball
tossed in the air or a rock rolling down a hill.

In science, one takes a large number of observations and tries to
abstract from them a small number of laws that encompass and
explain these observations. Newton came up with his own three laws
of motion. The first is the law of inertia. What does inertia mean? In
everyday usage, if you say “I have a lot of inertia today,” it means
you really don’t want to get going; you are sitting still, and you want
to continue to be a couch potato and not budge. It takes something
else to get you going. An object at rest (like a couch potato) will
remain at rest unless acted on by a force.

Let’s talk about what the force is. Newton’s law of inertia comes
in two parts. The first part states that an object that is at rest will
remain at rest, unless acted on by an external force. That makes
sense. Consider an apple sitting on the table. It has no net force
acting on it, and it remains at rest.

The second part of Newton’s law of inertia is less intuitive: an
object with uniform velocity will remain at that uniform velocity,
unless acted on by an external force. Uniform velocity means that it
goes at a certain speed and in a certain direction, neither of which
change. If I roll a ball along the floor, it doesn’t continue at a
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constant speed and in a constant direction forever, but rather slows
down and stops, because a force is acting on it: friction between the
ball and the floor. Friction is ubiquitous in everyday circumstances.
Consider throwing a piece of paper through the air: it slows and
then flutters to the floor. Actually, two forces are acting on it: (1)
gravity, about which we will have a great deal to say in a moment,
and (2) the force due to the resistance of the air itself. The paper
has a large surface area for the air to strike, making air resistance
important.

The idea that an object in motion will continue to move with
constant velocity unless acted on by a force is not intuitive, because
friction is all around us. It’s hard to find everyday situations in which
there’s no friction, and therefore no force. A figure skater has little
friction between the ice and her skates, and thus she can effortlessly
glide for a long time across the ice. In the limit of no friction at all,
an object given a push would retain a constant velocity. Galileo
figured this out. Outer space offers the most dramatic examples of
being away from all frictional forces. In space, you really can send
something off with uniform velocity and know that it will keep on
going, because there is nothing in its path to stop it. Newton
formulated this all into a basic law.

Newton’s second law of motion tells us about what happens
when an object is being acted on by a force. An object can be acted
on by a variety of forces, but whatever those forces are, it is the
sum of all the forces that causes a deviation from this uniform
velocity. We use the term acceleration to quantify this deviation:
acceleration is the change in velocity per unit of time. The second
law, then, relates the acceleration of an object to a force acting on
it. When you push an object with some force, the object will
accelerate. If the object has a small mass, the acceleration will be
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large, whereas if it is very massive, the acceleration will be smaller
for the same amount of force. This relationship gives us Newton’s
most famous equation, F = ma; force equals mass times
acceleration.

Newton’s third law of motion can be phrased colloquially as, “I
push you, you push me.” That is, if one body exerts a force on
another, that second body pushes back on the first with an equal
and opposite force. If you push down on a tabletop with your hand,
you feel a pressure back on your hand; the table is pushing back on
you. Every force is paired with an equal and opposite force.

Consider an apple sitting in your hand. It is clearly sitting still.
Does it have any forces acting on it? Yes, gravity from Earth. It
should be accelerating downward, but clearly it’s not. The reason is
that your hand is holding the apple, pushing upward on it (using
your arm muscles). In response, by Newton’s third law, the apple is
pushing down on your hand; that’s what we refer to as the apple’s
weight. The gravitational force from Earth pulling downward on the
apple and the force of your hand pushing back up on the apple
balance each other out; the sum of these two forces is zero. Zero
force means zero acceleration by Newton’s second law, so the apple,
which starts at rest, is not going anywhere.

Actually, the story is a bit more interesting than that. Earlier we
calculated that Earth is going around the Sun in a circle, at 30
km/sec, and thus the apple is moving at that same speed. To think
about this, we need to take a detour to talk about the nature of
circular motion.

Motion at constant speed of 30 km/sec in a circle is not uniform
velocity, because the direction of Earth’s motion is constantly
changing as it circles the Sun. If it didn’t change direction, Earth
would just go off on a straight line, not a circle. The acceleration
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that arises from going around in a circle is familiar from everyday
life. Various rides in amusement parks send you around in a circle,
and you can feel the acceleration viscerally.

Newton used the tools of differential calculus, which he had just
invented, to determine the acceleration of an object moving in a
circle of radius r at a constant speed v. That acceleration is v2/r,
directed toward the center of the circle. The apple in your hand,
which we considered to be standing still, is in fact moving at 30
km/sec in an enormous circle; it’s being accelerated. From Newton’s
second law, we know that there must be a force acting on it. That
force is the gravitational attraction of the Sun. The Sun is pulling
Earth around in an orbit, and it’s pulling our apple around as well.
The apple is subject to the force of the Sun’s gravity just as you and
I are.

We’re moving at 30 km/sec around the Sun. Given that
enormous speed, you might expect the resulting acceleration to be
large, but the acceleration is actually quite small, because the radius
of the circle is so enormous. Let’s calculate just how small. The
velocity of Earth is 30 km/sec, or 30,000 meters/sec, and the radius
of Earth’s orbit is 150,000,000,000 meters. Using our formula v2/r,
the acceleration a equals (30,000 meters/sec)2/150,000,000,000
meters = 0.006 meters/sec 2, or 0.006 meters per second per
second. That means that every second, the velocity changes by 6
millimeters per second. That is tiny. Galileo found that the
acceleration of an object falling to the ground under the influence of
Earth’s gravity is about 9.8 meters per second per second, a much
larger value. Therefore, although we’re moving around the Sun at
very high speed, Earth is being accelerated by only a small amount.
On an amusement ride, in contrast, we’re not going anywhere near
30 km/sec, but the radius r of the circle we’re moving around is tiny;
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when we divide by that small value of r in the formula v2/r, the
resulting acceleration gets quite large, and we are immediately
aware of the pull of this acceleration. (For example, a ride moving
you at 10 meters per second with a radius of 10 meters, would give
an acceleration of 10 meters per second per second.)

When we try to observe the acceleration due to the Sun, our
situation is more subtle. The Sun is gravitationally accelerating
everything on Earth—you, the book you’re holding, the apple in your
hand—all at the same rate. We are all in a free-fall orbit around the
Sun. We don’t detect any motion relative to the objects around us. It
seems to us that we are stationary; we don’t notice that we are
moving, nor do we notice that we’re being accelerated.

But the fact remains, Earth is being accelerated toward the Sun
by an amount v2/r. Newton then used Kepler’s third law to figure out
how the acceleration produced by the Sun varies with radius. The
orbital period P of the planet is

P = (2πr/v);

that is, the orbital period, P, is the distance the planet travels in
completing one orbit (2πr) divided by its velocity (v). Thus,

P is proportional to r/v, and
P2 is proportional to r2/v2.

Kepler told us that P2 is proportional to a3, where a is the semi-
major axis of the planet’s orbit. In this case, Earth’s orbit is nearly
circular, so we can say approximately that r = a, and therefore,
substituting r for a, we find:

P2 is proportional to r3.
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Since P2 is also proportional to r2/v2,

r2/v2 is proportional to r3.

Dividing by r, we get:

r/v2 is proportional to r2.

Inverting, we find,

v2/r (the acceleration) is proportional to 1/r2.

With these few steps of reasoning, Kepler’s third law, and a little
algebra, we’ve shown that the gravitational acceleration, and thus
the force, exerted by the Sun on a body at distance r away is
proportional to one over the square of that distance: Newton’s
“inverse-square” law of gravity. We have it in Newton’s own words:

‘I was in the prime of my age for invention & minded
Mathematicks & Philosophy more than any time since’ [my]
ensuing deduction ‘from Kepler’s rule of the periodical times
of the Planets being in a sesquialterate proportion of their
distances from the centers of their Orbs’ that ‘the forces
which keep the Planets in their Orbs must [be] reciprocally as
the squares of their distances from the centers about which
they revolve.’ 1

Newton applied this understanding of gravity to Earth and the
Moon. Consider the famous falling apple that inspired Newton. It lies
one Earth radius from the center of Earth and falls toward Earth with
an acceleration of 9.8 meters per second per second. The Moon lies
at a distance of 60 Earth radii. If the gravitational attraction of Earth
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falls off like 1/r2 (as is true for the Sun), then at the orbit of the
Moon, Earth’s gravitational attraction should cause an acceleration
(60)2 times smaller than the 9.8 meters per second per second at
Earth’s surface, or about 0.00272 meters per second per second.

Just as we did for the motion of Earth around the Sun, we can
calculate the acceleration of the Moon as it undergoes circular
motion around Earth, using its period (27.3 days) and the radius of
its orbit (384,000 kilometers). Plugging in the numbers to v2/r gives
an acceleration of 0.00272 meters per second per second. Eureka! It
agrees beautifully with the prediction from the apple. As Newton
himself said, he found the two results to “answer pretty nearly.” The
same force that pulls the apple toward Earth also pulls the Moon
toward Earth, curving its path away from a straight-line trajectory to
keep the Moon in an approximately circular orbit around Earth. The
gravity exerted by Earth that causes the apple to fall to Earth
extends to the orbit of the Moon. Newton discovered this while
staying at his grandmother’s house when Cambridge University was
closed during the plague years. But he didn’t publish his results.
Perhaps he was upset that the agreement between the prediction
and the observation was not perfect, a slight discrepancy caused by
the fact that Newton did not have a really accurate measurement of
the radius of Earth to work with. In any case, it was only many years
later that he would be prodded by Edmund Halley (of comet fame)
into publication.
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FIGURE 3.1. Acceleration of the Moon and Newton’s apple, falling from its tree.
Note that in each case, the acceleration (change of velocity) is directed toward the
center of Earth. Credit: J. Richard Gott

Newton worked out what is sometimes rather grandly called the
universal law of gravitation, introduced in chapter 2. Consider two
objects, say, Earth and the Sun. The distance between them (1 AU,
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or 1.5 × 108 km) is about 100 times the diameter of the Sun itself
(1.4 × 106 km). They have masses MEarth and MSun, respectively.

Newton found that the force of gravity between the two bodies is
proportional to each of their masses, and to the inverse square of
the distance r between them (using the reasoning from Kepler’s third
law, as just described). “Proportional” here means that the force will
involve a constant of proportionality, which we call G, or Newton’s
constant, in Sir Isaac’s honor. Here’s Newton’s formula for the force
between the Sun and Earth:

F = GMSunMEarth/r
2 .

The force is attractive: the two bodies attract each other, and
thus the force is directed from each object toward the other.

By Newton’s third law of motion, this formula covers both the
gravitational force of the Sun on Earth and the force of Earth on the
Sun. But the Sun’s mass is much, much larger than Earth’s mass.
Newton’s second law tells us that the acceleration is the force
divided by the mass. As a consequence, the acceleration of Earth is
much, much larger than that of the Sun, and therefore, the motion
of the Sun due to this force is tiny compared with that of Earth.
(They both orbit their mutual center of mass, but this is inside the
surface of the Sun. The Sun executes a tiny circular motion about
this center of mass, while Earth makes a grand circuit around the
Sun.)

Here is another fascinating consequence of Newton’s formula. By
Newton’s second law, the force of gravity, which we have just
written down, is equal to the mass of Earth (MEarth) times its
acceleration, and for circular motion, the acceleration is equal to
v2/r. So in this case, F = ma can be rewritten as:
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GMSunMEarth/r
2 = MEarthv

2/r .

Note that the mass of Earth appears on both sides of this
equation, and thus we can divide it out, leaving:

GMSun/r
2 = v2/r .

What this means is that the acceleration of Earth (GMSun/r
2 =

v2/r) does not depend on Earth’s mass. That’s a remarkable fact.
The acceleration of gravity does not depend on the mass of the
object being accelerated, either for orbits around the Sun or for
objects falling in Earth’s gravitational field, because the mass of the
object appears on both sides of the F = ma equation and thus
factors out. If I drop both a book and a piece of paper, they will feel
the same acceleration, and should fall at the same rate, even though
the book is much more massive. That’s what Galileo said would
occur in the vacuum. Does it work in practice? No, a book and a
piece of paper fall at different rates, because of air resistance. Air
resistance exerts a force on both the book and the paper, but since
the book is much more massive than the piece of paper, the
acceleration of the book due to the air resistance is small—
essentially negligible. However, if I put the piece of paper on top of a
big book, so that the book blocks the air resistance to the paper, and
drop them again, the paper will stay sitting on the book as they fall
together at the same rate. Try the experiment yourself!

When the Apollo 15 astronauts went to the Moon, they brought
along a hammer and a feather to do an experiment to test this
principle. The Moon has effectively no atmosphere: a very good
vacuum exists above its surface, and hence there is no appreciable
air resistance. When the astronauts dropped the feather and the
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hammer simultaneously, they fell at exactly the same rate, just as
Newton (and Galileo) had predicted. You can see the video record of
their lunar experiment online.

You may know that Aristotle got this wrong. Aristotle said that
more massive objects would be subject to a greater acceleration and
fall faster. He said that because it seemed logical to him, but in fact
he never did an experiment to see whether his idea was correct. He
could have taken big rocks and little rocks (neither of which is much
affected by air resistance) and dropped them to discover that they
would fall at the same rate. The bottom line here is that in science,
it is crucial to check your intuitions with experiment!

Let’s do a related problem. Consider the gravitational force
exerted by Earth on an apple held in your outstretched hand.
Newton’s formula includes the distance r from the apple to Earth. We
might naively think we should use the distance from the apple to the
floor, about 2 meters. But that turns out not to be right. Newton
realized that you must take into account the gravitational attraction
from each and every gram of Earth: not just the piece at our feet,
but also those parts on the other side of the globe. It took him about
20 years to figure out how to do this calculation. He needed to add
up the forces from every separate chunk of Earth, each at their own
distance and direction from this apple. To add up all these forces, he
needed to invent a new branch of mathematics, now called integral
calculus. The net result of the calculation is that gravity for a
spherical object (like Earth) acts as if all its mass were concentrated
at its center, a very nonintuitive concept. To do the calculation of the
gravitational force on the apple, you need to imagine that the full
mass of Earth lies at a point 6,371 km beneath your feet, the
distance from the surface to the center of Earth. We’ve already
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invoked this process when we discussed Newton’s comparison of the
falling apple to the orbiting Moon.

But an apple falling (straight down) surely doesn’t seem to be
the same as the orbital motion of the Moon. Why does the Moon go
in circles, whereas the apple simply hits the ground? To put the
apple into orbit, I’d have to throw it hard horizontally, so hard that it
could go all the way around Earth. Consider the case of the Hubble
Space Telescope, just a few hundred kilometers above Earth’s
surface. It travels completely around Earth, a circumference of
25,000 miles, in about 90 minutes. If we convert this to a speed, it
turns out to be about 5 miles per second. So, to get an apple into
orbit, I’d have to throw it horizontally at about 5 miles per second.

Imagine standing on top of a high mountain (above the frictional
effects of the atmosphere) and throwing objects horizontally at ever
greater speeds. Throw that apple as hard as you can; it quickly falls
to the ground. Get a major league pitcher to toss it; it will go
somewhat farther, but it will still fall down. Now let’s get Superman
to throw it. As he throws harder and harder, the apple will go farther
and farther before its downward-curving trajectory hits the surface
of Earth. But Earth’s surface is not flat; it also curves downward in
the distance. Superman can indeed throw an object at 5 miles per
second. The object will also fall under the influence of gravity, but its
curved trajectory now matches the curvature of Earth such that it
never hits the surface and will end up in a circular orbit. The object
in orbit is falling the entire time, albeit with plenty of sideways
motion. When you drop an apple, it falls down due to the
acceleration of Earth’s gravity. That same gravity is causing both the
Hubble Space Telescope to orbit Earth and the Moon to go around
Earth (in a much higher orbit, therefore moving more slowly). In
low-Earth orbit, you are falling at the same rate that Earth curves
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around, and you never hit the ground. Newton understood this, and
proposed the idea of an artificial satellite in orbit around Earth—270
years ahead of its actually being done!

If you’ve ever been in an elevator that suddenly jerks down
quickly, for a very brief period you’re falling, and everything around
you is falling with you. When you drop an apple, you yourself don’t
fall with it, because the force of the ground on the soles of your feet
keeps you up. You are standing at rest relative to your surroundings,
but the apple feels the acceleration and it falls. If you were knocked
off your feet and fell with the apple, I would see the apple falling
with you (at least until you and the apple both hit the floor).

You have probably seen images of astronauts in the International
Space Station in orbit around Earth. Earth’s gravity is acting on the
astronauts and the International Space Station alike. But everything
in the space station is falling at the same rate—recall our calculation
that the acceleration of gravity does not depend on the mass of the
object in orbit. With everything falling at the same rate, the
astronauts feel weightless. “Weight” means what a bathroom scale
registers when you stand on it (or equivalently, how much the
bathroom scale pushes back on you, by Newton’s third law). But if
the scale is falling just as you are, you are not pushing down on the
scale, and it registers your weight as zero. You are weightless.

This doesn’t mean that your mass is zero, however. Mass and
weight are not the same thing! Mass, according to Newton, is the
quantity that goes into his second law of motion (relating forces,
masses, and acceleration); it’s also the quantity that gives rise to
gravity. When people talk about losing “weight” what they really
want to do is lose mass. Fat has mass, and they wish to get rid of
some of that. Then, with the same amount of force, they can
accelerate faster, and get around more easily.
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Let’s now take stock of what Newton accomplished. From
observations of the motions of the planets known at the time, Kepler
had abstracted three laws to describe their orbits. Then Newton
came along and thought about this in a whole different way; with his
three laws of motion, he attempted to understand how everything
moves, not just the six planets known at the time to orbit the Sun.
In addition, he developed a physical understanding of the force of
gravity, the most important force in astronomy. Using Kepler’s third
law, he showed that the force of gravity must fall off like 1/r2. He
found that the gravitational force between two bodies was attractive:
the gravitational force of the Sun on a planet was F =
GMSunMPlanet/r

2. Putting these together, we saw that we could
understand Kepler’s third law in terms of Newton’s laws of motion
and law of gravity. Newton came up with a much broader
understanding of the physics behind Kepler’s third law than Kepler
had done.

In a final triumph, Newton showed that his law of gravitation
predicted that a planet would trace out a perfect elliptical orbit with
the Sun at one focus, and that a line connecting the planet to the
Sun would sweep out equal areas in equal times. All three of Kepler’s
laws can now be seen as a direct consequence of Newton’s one law
of gravitational attraction, together with his three laws of motion.

Newton’s laws of gravity were the first laws of physics we
understood. Importantly, they could be used to make predictions
that could be tested. Halley used Newton’s laws to discover that
several comet appearances over the centuries (including one in 1066
recorded in the Bayeux Tapestry) were actually all the same comet
on a highly elliptical orbit. It returned approximately once every 76
years. It was perturbed by Jupiter and Saturn as it crossed their
orbits, and its somewhat variable time of arrival could be predicted
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with Newton’s laws—whereas with Kepler’s laws, it would have been
exactly periodic. Halley predicted the comet would return again in
1758. Halley died in 1742 and didn’t live to see the event, but when
it did reappear in 1758 as he had predicted, they named it after him
the next year: Halley’s comet. Its closest approach to the Sun was
predicted by Alexis Clairaut, Jérôme LaLande, and Nicole-Reine
Lepaute, using Newton’s laws, with an accuracy of 1 month. This
was a remarkable confirmation of Newton’s laws of gravity.

Newton’s laws had another great success. The planet Uranus was
not following Newton’s laws exactly; its orbit seemed to be
perturbed. Urbain Le Verrier found that this could be explained if
Uranus was being pulled by the gravity of another unseen planet
farther out from the Sun. He predicted where this planet could be
found, and in 1846, Johann Gottfried Galle and Heinrich Louis
d’Arrest, using Le Verrier’s calculations, found it only 1° in the sky
away from where Le Verrier had predicted it would be. Newton’s
laws had been used to discover a new planet: Neptune. Newton’s
reputation soared.

We’ll find ourselves using these basic notions of forces and
gravity again and again throughout this book for understanding the
universe.
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4
HOW STARS RADIATE

ENERGY (I)
NEIL DEGRASSE TYSON

We now attempt to understand the distances to the stars. We’ve
already seen that the distance from the Sun to Earth, 150 million km
(or 1 AU), is about 100 times the diameter of the Sun itself. Imagine
that we scale the Earth–Sun distance down to 1 meter; the Sun itself
is then 1 centimeter across. The nearest stars are about 200,000 AU
away, so to scale, that is 200 km. The space between stars is
enormous compared to their size. We will find it convenient to refer
to these distances not in kilometers or centimeters, but in terms of
the time it takes light to traverse them.

The speed of light, which we refer to with the letter c, is 3 × 108

meters/sec, another number worth keeping in mind. In chapter 17,
we will see in great detail why this speed represents the cosmic
speed limit. It’s as fast as anything can go. Since we observe stars
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by their light, it provides the most natural distance units. One light-
second is the distance that light travels in 1 second: 3 × 108 meters,
or 300,000 km—about seven times Earth’s circumference. The Moon
is 384,000 km away, and light travels that distance in 1.3 seconds.
We say the Moon is about 1.3 light-seconds away. The distance from
Earth to the Sun (1 AU) is about 8 light-minutes; taking light about 8
minutes to travel that distance. The nearest stars are about 4 light-
years away. A light-year is thus a measure of distance, not of time—
the distance light travels in 1 year. One light-year is about 10 trillion
km. The light we see today from the nearest stars left them 4 years
ago. In the universe, we’re always looking back in time. We are
seeing these nearby stars, not as they are at the present moment,
but as they were 4 years ago.

This is true in everyday life as well. The speed of light, expressed
in other units, is about 1 foot per nanosecond, so two people sitting
at a table are seeing each other with a delay of a few nanoseconds.
Of course, this is much too small for us to notice, but all our visual
contact has a time delay built into it.
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FIGURE 4.1. Parallax. As Earth circles the Sun, a nearby star shifts position in the
sky relative to distant stars.
Credit: J. Richard Gott

How can we measure the distances to the nearest stars? Four
light-years is enormous. We can’t simply stretch a tape measure
between here and a star. In that effort, we need to introduce the
concept of parallax. Earth orbits around the Sun (see figure 4.1).
Earth is on one side of the Sun in January and 6 months later, in
July, Earth is on the other side of the Sun. Toward Earth’s right in
the figure there’s a nearby star, and then way out on the right is a
field of more distant stars. They’re so far away that I am going to
stick all of them way off to the right. Then imagine that I take a
picture of the nearby star in January. I am going to see all kinds of
stars on that photograph, and one of them will be the star in
question (filled in). See the view from Earth in January in figure 4.1.
Alone, this picture tells us nothing, of course. Remember, I don’t
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know which stars are close and which ones are far away—I don’t
know anything about this yet. But we wait 6 months, and we take
that picture again from the opposite side of Earth’s orbit in July,
when Earth has moved to a new position. Now we see all that
identical background, but our (filled-in) star has appeared to move
from where it once was, to its new location as viewed from Earth in
July. It has shifted. Everything else basically stays in the same place.
What will happen in another 6 months? It shifts back, from whence
it came. That shifting just repeats itself, back and forth, depending
on when in the year we observe the star.

Flash the two pictures back and forth, one after the other. If you
are flashing them and the two photographs are identical except for
one star that moves, then that star is the one that is closer than all
the others. If this star were even closer, then this shift on the picture
would be bigger. Closer stars “shift” more. I put “shift” in quotes
because the star is just sitting there—we are the ones moving back
and forth around the Sun; the shift is really due to a change of our
perspective.
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INSTRUCTIONS FOR SEEING STEREOSCOPIC
ART IN THREE DIMENSIONS

Given that we sense depth in the real world when our two eyes see things
from slightly different perspectives, we can trick ourselves into seeing a
three-dimensional scene even in the flat pages of a book—all we need is
to present two images side by side, one as seen by the point of view of
the right eye and one as seen by the point of view of the left eye. In this
stereo pair (see figure 4.2), the image for the right eye is on the left and
the image for the left eye is on the right, so you will be looking at this
cross-eyed. It is easier than you think. Hold the book with one hand about
15 inches in front of your eyes. Hold the index finger of your other hand
straight up about half-way between your eyes and the page. Look at the
page. You will also see two blurry transparent images of your finger (one
as seen by the right eye and one seen by the left eye). Move your finger
back and forth until these two transparent images of your finger are
perfectly centered at the bottom of each image on the page. You might
have to tilt your head left or right to get the two images of your finger
level with each other. Now focus your attention on your finger. You should
see one image of your finger and three blurry versions of the pictures on
the page. Carefully shift your attention to the middle picture, without
uncrossing your eyes. It should come into focus as a beautiful 3D image,
with the bright foreground star Vega jumping right off the page in front of
the other stars! You can see that different stars are at different distances.
Your brain is automatically measuring the shifts and doing the parallax
calculation. This, of course, is how we generate 3D vision. Our brain is
constantly comparing the views from our two eyes and doing parallax
calculations to determine the distances to the objects we see.
Alternatively, start by just looking at your finger—your eyes will naturally
cross to look at it. Behind it will appear the three blurry images, Shift your
gaze to the center one, and it will appear in 3D. Keep trying—it takes a bit
of practice. Not everyone can see it, but if you can, it is a spectacular
effect, and worth the effort to master. We will use this technique later in
the book once again in figure 18.1.
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You can demonstrate this for yourself. Close your left eye and
hold your thumb out at arm’s length. Line your thumb up with an
object in the distance using your right eye only. Now wink to the
other eye. What happens? Your thumb appears to move. Now take
your thumb and position it only half an arm’s length from your eyes
and repeat that exercise. Your thumb shifts even more. People
discovered this effect and realized that it works for stars: the nearby
star is your thumb, and the diameter of Earth’s orbit is the
separation of your two eyes. Obviously, if you use your own eyes to
try to measure the distance to a star, it will not be effective, because
the couple of inches between your eyeballs is not enough to get
nicely different angles on the star. But the diameter of Earth’s orbit is
300 million kilometers. That’s a nice broad distance for winking at
the universe and deriving a measure of how close a star is to you.

In figure 4.2 we have a simulation of this showing the
constellation Lyra. The stars in the two pictures have been shifted
proportional to their observed parallax as if representing two photos
taken at two times 6 months apart in Earth’s orbit. We have just
exaggerated the amount of the shift so that you can see it easily.
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FIGURE 4.2. Parallax of Vega. Two simulated pictures of the constellation Lyra as
if taken 6 months apart from Earth as it circles the Sun. Each of the stars in the
picture has a parallax shift inversely proportional to its distance. (The parallax
shifts have been exaggerated by a large factor to make them visible.) Vega (the
brightest star in Lyra), a foreground star only 25 light-years away, shifts the most.
You can see Vega’s parallax shift by comparing its position in the two images. You
can also see this as a 3D image that jumps off the page by following instructions
in the text to view the two pictures as a cross-eyed stereo pair. Photo credit:
Robert J. Vanderbei and J. Richard Gott

The brightest star in the picture, Vega, is only 25 light-years
away. It is much closer than its fellow stars in the constellation of
Lyra in the center. If you compare the two pictures carefully, looking
for differences, you will see that Vega has shifted more than the
other stars.

The farther away a star is, the smaller the shift becomes. But for
many relatively nearby stars, we can measure their distances using
this technique. To do this, we need to apply a few basic facts of
geometry. In figure 4.1, we saw the nearby star in front of one set
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of stars in January and then we saw the star shift in front of other
stars in July. By convention, half of this shift is called the parallax
angle, corresponding to the shift you would see if you moved only
1 AU instead of 2 AU. We know the radius of Earth’s orbit (1 AU) in
kilometers. We can measure the parallax angle. Consider the triangle
formed by Earth the Sun, and the star. It is a right triangle with its
90° angle at the Sun. The shift in angle you observe during the year
when looking at the nearby star is exactly the same shift that an
observer sitting on that nearby star would see, looking back at you
along the same two lines of sight. That means that the parallax
angle (half the total shift) you observe will be equal to the angle
between the Sun and Earth (in July) as seen by an observer on the
star (see figure 4.1 again). Thus, the Earth–Sun–Star triangle has a
90° angle (at the Sun), an angle equal to the parallax angle (at the
star), and angle (at Earth) of 90° minus the parallax angle; this is
true because, according to Euclidean geometry, the sum of angles in
a triangle must equal 180°.

You know one leg of the triangle (the Earth–Sun distance), and if
you know the angles in the triangle, you can determine the length of
the leg of the triangle connecting the Sun and the star. That gives
you a direct measure of the star’s distance. Let’s invent a new unit of
distance. Let’s designate a distance such that a star at that distance
would have a parallax angle of 1 arc second. One arc second is of
course 1/60 of a minute of arc, which is itself 1/60 of a degree. An
arc second is 1/3,600 of a degree. There exists a distance a star can
have where the parallax angle is 1 arc second. That distance is
called 1 parsec. Is that name cool or what? A parallax angle of 1
second of arc is 1/(360 × 60 × 60) of the circumference of a circle.
If the star is at a distance d, the circumference of that circle is C =
2πd. The Earth–Sun distance r = 1 AU subtends 1/(360 × 60 × 60)
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of that circumference, making 1 AU/2πd = 1/(360 × 60 × 60).
Therefore, for a parallax of 1 second of arc, d = 206,265 AU = 1
parsec. It’s all just Euclidean geometry.

If you watch Star Trek, you hear them use this unit of distance.
What distance is that in light-years? It’s 3.26 light-years. The unit of
parsec is cute and fun to say, but in this book we mostly stick to
light-years. In case you ever encounter this term parsec, now you
know where it comes from. Astronomers coined the word by
combining those two other terms, parallax and arc second. A star
that has a parallax of ½ arc second is 2 parsecs away. A star that
has a parallax of 1/10 of an arc second is 10 parsecs away. Easy. We
have several made-up terms in astronomy that get a lot of mileage—
quasar, for instance. It comes from quasi-stellar radio source. Pulsar
is from pulsating star—we made that one up, and people love it.
There is a Pulsar watch.

What is the star nearest to Earth? The Sun. If you said Alpha
Centauri, I tricked you. The star system nearest to the Sun is Alpha
Centauri. Alpha says it’s the brightest star of its constellation, the
southern constellation Centaurus, but it’s actually a three-star
system, one of whose stars is closest to our solar system. A triple
star system—very cool. There is Alpha Centauri A, a solar-type star,
123% the diameter of the Sun; Alpha Centauri B, 86.5% the
diameter of the Sun; and Proxima Centauri, a dim red star, only 14%
the diameter of the Sun. Of these 3 stars, the one closest to our Sun
is Proxima Centauri. That’s why we call it Proxima. Its distance from
us is about 4.1 light-years, giving a parallax of 0.8 arc seconds.

One arc second is really, really small. For most images you will
ever see of the night sky taken from professional telescopes on
Earth, the apparent size of a star on the image is typically one arc
second. That’s typical for ground-based telescopes. The Hubble
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Space Telescope does ten times better than that. The atmosphere
wreaks havoc and blurs the images when we use telescopes here on
Earth. Starlight comes in as a sharp point of light, minding its own
business, and then it hits the atmosphere, gets bounced and jiggled
and smeared, and finally ends up being this blob. On Earth we say,
“Oh, isn’t that pretty? The star is twinkling!” But twinkling is nasty to
an astronomer trying to observe the star, and one arc second is a
typical width of that twinkling image.

Notice that one parsec is less than the distance to the nearest
star. That’s why it took thousands of years for the parallax to be
measured. Not until 1838 did the German mathematician Friedrich
Bessel measure our first stellar parallax. (If the atmosphere smears
an image to a width of 1 second of arc, an observer looking through
a telescope had to take many measurements to achieve an accuracy
below 1 arc second.) In fact, arguments put forth by Aristarchus
more than 2,000 years ago to say that Earth was in orbit around the
Sun were squashed by the lack of observed parallax at that time.
The Greeks were smart folks. “Okay,” they said, “you don’t like our
geocentric universe with the Sun going around Earth? You want
Earth to go around the Sun?” They knew that, if Earth indeed went
around the Sun, you would have a different angle for viewing close
stars when Earth was on one side of the Sun compared with the
other. They said we ought to be able to see this parallax effect.
Telescopes weren’t invented yet, so they just looked very carefully,
and kept on looking. No matter how hard they squinted, they
couldn’t find any difference. In fact, because this effect couldn’t be
measured without telescopes, they used it as potent evidence
against the Sun-centered, heliocentric universe. But absence of
evidence isn’t always the same as evidence of absence.
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Even after watching all those stars in the nighttime sky, and
noticing that fuzzy nebulous objects lurked among them, we had no
real sense of the universe until the early decades of the twentieth
century. That’s when we obtained data by passing starlight through
a prism and looked at the resulting features. From there we learned
that some stars can be used as “standard candles.” Think about it. If
every star in the night sky were exactly the same—if they were cut
out with some cookie cutter, and flung into the universe—the dim
ones would always be farther away than the bright ones. Then it
would be simple. All the bright stars would be close. Dim stars would
be far. But it’s just not the case. Among this zoo of stars, no matter
where we find them, we search for and find stars of the same kind.
So, if a star has some peculiar feature in its spectrum, and if a star
of that same variety is close enough to observe its parallax, it’s a
happy day. We can now calibrate the star’s luminosity and use it to
find out whether other stars like it are one-fourth as bright or one-
ninth as bright, and then we can calculate how far away they are.
But we need that standard candle, that yardstick. And we didn’t
have such yardsticks until the 1920s. Until then we were pretty
ignorant about how far away things are in the universe. In fact,
books from that period describe the universe as simply the extent of
the stars, with no knowledge or account of a larger universe beyond.

When trying to understand stars, you need some additional
mathematical tools for your utility belt. One tool is going to be
distribution functions. They are powerful and useful mathematical
ideas. I want to ease into them, so let’s introduce a simple version of
a distribution function, something that USA Today might refer to as a
bar chart, since they’re big on charts and graphs. For example, we
could plot the number of people in a typical college classroom as a
function of age (figure 4.3).



78

FIGURE 4.3. Bar chart of ages in a class.
Credit: J. Richard Gott

To make such a chart, one would start by asking the people in
the class if anyone was 16 years old or younger. If no one answered,
the chart would get a value of zero for those ages. Next, one would
ask how many are 17–18 years old. Let’s say 20 people. Make the
bar for 17–18 years exactly 20 units tall. And 19–20 years old?
Thirty-five people. Keep going until all the people have been tallied.

Let’s take a step back and look at figure 4.3. There are things it
can tell us about the distribution of people in this typical class. For
example, most people cluster around age 20, which tells anyone
looking at this chart that it’s probably a college class. Then there is a
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gap and a few stragglers and another bump in the mid-70s—we
have two bumps, two modes. We would call this a bimodal
distribution. Most individuals in this older group are not actually
undergraduate students; they are probably auditors in the class, and
because people who audit daytime college classes are not those who
have to work 9 to 5 to pay the rent, they’re probably retired. You
can gain insight into a population just by looking at this distribution.
If we did this for the students in an entire college campus, then we
would probably fill in some of the empty spots, but I bet it would
take pretty much this same shape: mostly undergraduates, some
older people, and occasionally you will find that precocious 14-year-
old—maybe one in a thousand—because every freshman class
seems to have one. This bar chart has bins 2 years wide. If I could
increase the sample size enough, to include all college students in
the country, I could make each bin only 1 day wide. I could collect
so much data that I could fill this chart in and it would not be so
jagged. With that much data, my bins would be so narrow that I
could step back and put a smooth curve on it. If you go from a bar
chart to a smooth curve and you can represent this with some
mathematical form, your bar chart has become a distribution
function.

What is the total number of people in the class? That’s easy—just
step along the scale and add up the numbers. In this case, we get
109. If you have smooth functions, you can use integral calculus to
add up the area under the curve and give you the total number of
things represented in it. Isaac Newton invented differential and
integral calculus by the time he was 26—and was in my opinion the
smartest person ever to walk the face of Earth!

How does this apply to stars? Let’s look at the Sun. I’m going to
say, “Sun, tell me something. I want to know how many particles of
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light you are emitting.” Isaac Newton also came up with the idea of
corpuscles of light—particles—long before Einstein, I might add. I
have a word for these particles, photons—not protons, but photons.
Pho- as in photograph, as in “photon torpedoes.” Trekkies know that
term.

Photons come in all flavors. Isaac Newton took white light and
passed it through a prism. He listed the colors of the rainbow he
saw: red, orange, yellow, green, blue, indigo (a big dye color back in
Newton’s day, so he included it in the spectrum), and violet. Today
we typically mention only six colors in the rainbow. But as an
hommage to Isaac, I usually include indigo, plus you get to spell out
“Roy G Biv”—a good way to remember the rainbow colors.

The English astronomer William Herschel discovered that another
whole other branch of the spectrum—something today we call
infrared, which our eyes are not sensitive to. On the scale of energy
it falls “below” red. Herschel passed sunlight through a prism and
noticed that a thermometer placed off the red end of the visible
spectrum got hot. Off the other side of the visible spectrum, you can
also go beyond violet to get ultraviolet, or UV. You’ve heard of these
bands of light before, because they show up in everyday life. UV
radiation gives you a suntan or a sunburn; infrared heaters in a
restaurant keep your French fries warm until you buy them.

The spectrum is therefore much richer than what shows up in the
visible part. Further beyond ultraviolet, we have X-rays. There are X-
ray photons. Beyond X-rays, we have gamma rays. You’ve heard of
all of these. Let’s go the other way, toward the infrared. Below
infrared? Microwaves. Below them? Radio waves. Microwaves used
to be considered a subset of radio waves, but now they’re treated as
a separate part of the spectrum in their own right. These are all the
parts of the spectrum for which we have words. There is nothing
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beyond gamma rays—we just continue to call them gamma rays—
and nothing beyond radio waves.

A photon is a particle. We can also think of it as being a wave, a
wave–particle duality. Well, you say, which is it? Is it a wave or a
particle? That question has no meaning. We should instead be
asking ourselves why our brains can’t wrap themselves around
something that has a dual reality inherent in it. That’s the problem.
We could make up a word such as “wavicle.” This term was
introduced some time ago, but it never caught on because people
still want to know which it is. The answer depends on how you
measure it. We can think of it as a wave, and waves have
wavelengths. Except we don’t use L to denote the length of the
wave; we use the Greek letter that has the same sound as the L,
lambda. We use lowercased lambda, which looks like this: λ, the
preferred symbol for wavelength.

How big are radio waves? Think about them this way: in the old
days, if you wanted to change the channel on your TV, you had to
get off the couch, walk up to it, and turn a knob. This was so long
ago. That same TV had a “rabbit-ear” antenna on it—two extendable
wires that went up like a V—if the reception didn’t come in right, you
moved the two wires of the antenna. These antennas had a certain
length to them, about a meter. In fact, TV waves are about a meter
in wavelength. The antennas received TV waves from the air. That’s
why when you go to a TV studio, there is a sign that says “On the
Air,” because it’s broadcasting through the air to your house. Of
course, much of it now comes via cable, but the sign today doesn’t
say “On the Cable.” And in any case, light (including radio waves)
passes through the vacuum of space with no trouble. So the air is
irrelevant, which always left me wanting to change the “On the Air”
signs to “On the Space.”
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How about mobile phones? How big are their antennas? Quite
small. They use microwaves, which are only a centimeter in length.
Nowadays, the antenna is built into the phone itself, but in the old
days, you would extend a short, stubby antenna every time you
used your mobile phone.

How big are the holes on the screen of your microwave oven?
They have holes so you can see the food cooking inside. Maybe you
didn’t notice, but these holes are only a couple of millimeters across.
That’s smaller than the actual wavelength of the microwaves that
heat your food. So the 1-centimeter microwave trying to get out of
the oven sees a hole only a couple of millimeters wide, and it can’t
get out. It can’t find any exit from the microwave oven. Do you
know who else uses microwaves? Police do when they point a radar
beam at drivers to measure their speed. Microwaves reflect off the
metal of your car. Here’s one way to thwart that: you know those
black canvas bug protectors that some people, usually guys with
sports cars, put over the front end of their cars? They absorb
microwaves very well, so if you beam microwaves at it, the signal
that returns to the police radar gun is so weak that usually you can’t
get a reading back. Of course a car’s windshield is transparent to
microwaves. How do you know microwaves pass through glass?
Where do people put their radar detector? Typically, inside the car
on the dashboard. So obviously, microwaves pass through the glass.
In the same way, you can cook food in a glass container in a
microwave oven, because microwaves pass through unobstructed.
Police use something called the Doppler shift to get your speed,
which we’ll be discussing a bit later. For now, you just need to know
that in this case, it’s a measure of the change in the wavelength of a
signal reflected off a moving body. You get the most accurate
reading if you take the measurement in the exact path of the object
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in motion. In practice, radar gun detectors do not measure the
correct speed for your car, because to do so, the police officer would
have to stand in the middle of the traffic lane, which they don’t tend
to do. Instead, they stand to the side, which means the speed they
get is always less (unfortunately) than your actual speed. So if they
catch you speeding you have no argument. Just pay your ticket and
move on.

The police radar gun sends a signal that reflects off your car.
Imagine you are looking at your own reflection in a mirror that is 10
feet away, and the mirror is moving toward you at 1 foot per second.
Your reflected image starts out 20 feet away from you (the light
goes out 10 feet and back 10). But one second later, the mirror is
only 9 feet from you and you see your reflected image only 18 feet
away. You see your reflected image rushing toward you at 2 feet per
second. Likewise, the policeman is observing the reflection of his
own radar gun rushing toward him at twice your speed. Try
explaining that to the judge! Of course, radar guns are calibrated to
report half the Doppler shift they measure—to properly report the
velocity of the mirror—your car. By the way, radar is an acronym of
“radio detection and ranging,” from back when microwaves were
considered part of the radio wave family.

Since we’re talking about microwaves, as it happens, the water
molecule, H2O, is very responsive to microwaves; the microwaves in
your microwave oven flip the molecule back and forth at the
frequency of the wave itself. If you have a bunch of water
molecules, they will all do it. Billions of trillions of them. Before long,
the water gets hot because of the friction between the molecules as
they undergo these flips. Anything you put in a microwave oven that
has water in it will get hot. Everything you eat other than salt has
water in it. That’s why microwave ovens are so effective at cooking
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your food, and why it doesn’t heat your glass plate if you don’t have
food on it.

The human body reacts to infrared radiation. Your skin absorbs
it, creating heat, and you feel warm. Visible light we know well.
Depending on what shade of skin color you have, you will be more
or less sensitive to ultraviolet light. It can damage the lower layers
of your skin and give you skin cancer. Ozone in the atmosphere
protects us from most of the Sun’s ultraviolet rays. The oxygen in
the air is in molecular form: O2 plus some ozone O3 (molecules
composed of two and three oxygen atoms, respectively). Ozone lives
in the upper atmosphere and is just waiting to break apart. In comes
an ultraviolet photon, which gets absorbed, breaking the ozone
apart. The ultraviolet light is gone—it just got eaten by the ozone. If
you take away the ozone, there will be nothing to consume the
ultraviolet, and it will come straight down, sending skin cancer
incidence up. Mars has no ozone, so the surface of Mars is
constantly bathed by ultraviolet light from the Sun. That’s why we
suspect, and I think correctly, that Mars has no life on its surface
today, even if there may be life below the surface. Anything
biological exposed to that much ultraviolet radiation would have
decomposed.

Almost everyone has been X-rayed. Can you remember what the
X-ray technician does before he or she turns the switch to expose
you? The technician lays you out and says, “okay, hold still,” and
then goes outside, behind some lead shielding, closes the door, and
then turns the switch. Your technician doesn’t want X-ray exposure.
You should take a hint that what’s about to happen is not good for
you. But usually, not taking the X-rays is worse than taking them if
you need the X-rays for a diagnosis—if your arm is broken the X-ray
image can tell you. X-rays penetrate much deeper than your skin;
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they can trigger cancerous growths in your internal organs. But if
the X-ray dose you receive is low, the risk is small.

Gamma rays are worse. They go right to your DNA and can mess
you up. Even comic books know that gamma rays are bad for you.
Remember the Incredible Hulk? How did he become the Hulk? What
happened to him? Wasn’t he doing some experiment that exposed
him to a high dose of gamma rays? And now when he gets angry, he
gets big, ugly, and green. So watch out for gamma rays—we don’t
want that happening to you. As you move along the spectrum to
shorter wavelengths, from UV to X-rays to gamma rays, the energy
contained in each photon goes up, and its capacity to do damage
increases.

In modern times, radio waves are all around us. All the time. And
there’s a simple experiment you can do to prove it. Turn on a radio,
and tune into a station. Any station, at any time. They are all around
you, constantly broadcasting. How do you know you are constantly
bathed in microwaves—all the time? Your mobile phone can ring
anytime while you are just sitting there. Presuming you never crawl
into the high-intensity field of a microwave oven, microwaves are
harmless compared to what is going on at the high-energy part of
the spectrum.

All these photons travel at one speed through empty space. The
speed of light. It’s not just a good idea—it’s the law. Visible light, as
we have defined it, sits in the middle part of the electromagnetic
spectrum, but it is all light, traveling at 300,000 km/sec
(299,792,458 meters/sec, to be exact). It’s one of the most
important constants of nature that we know.

The photons of all bands of light move at the same speed, yet
they have different wavelengths. As I stand watching them pass,
their frequency is defined as the number of wave crests that go by
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per second. If the waves are of shorter wavelength, many more
crests will go by in a second. So high frequency corresponds to short
wavelengths, and conversely, low frequencies correspond to longer
wavelengths. It’s a perfect situation for an equation: the speed of
light (c) equals frequency times wavelength (λ). For frequency, we
use the Greek letter nu: ν. Our equation becomes

c = νλ.

Suppose we had radio waves with a wavelength of 1 meter. The
speed of light is approximately 300,000,000 meters/sec, which is
equal to ν times 1 meter, making the frequency 300,000,000 crests
or (cycles) per second (or 300 megacycles).

In fact, frequency and the energy in a photon are bound in an
equation, too. The energy E of a photon is equal to hν:

E = hν.

Einstein discovered this equation. The equation uses Planck’s
constant h, named for the German physicist Max Planck. It serves as
a proportionality constant in the equation, telling us how the
frequency and energy of a photon are related. The higher its
frequency is, the higher the energy of an individual photon will be.
While X-ray photons pack a large punch, radio wave photons each
carry only a tiny amount of energy.

Time to query the Sun. How many photons of each of these
wavelengths are you giving me? How many green photons are
coming from your surface, how many red ones, how many infrared,
microwave, radio wave, and gamma ray photons? I want to know.
So many photons emerge from the Sun that I can do much better
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than a simple bar chart, because I am flooded with data. I can make
a smooth curve, and when I do, I will plot intensity versus
wavelength. In this case, intensity, plotted vertically, represents the
number of photons per second coming out of the Sun per square
meter of the Sun’s surface, per unit wavelength interval, at the
wavelength of interest, times the energy each photon carries. We
could have just counted photons, but in the end, we’re typically
interested in the energy they carry. This vertical axis gives us the
power (energy per unit time) emerging from the Sun’s surface per
unit area per unit wavelength. Horizontally, I have wavelength
increasing to the right. So let’s put in X-rays, UV, visible (the
rainbow-colored band), infrared (IR), and microwaves (labeled
μwave). Figure 4.4 shows the distribution function of intensity from
the Sun.
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FIGURE 4.4. Radiation from stars and humans. The vertical coordinate plots
energy per unit time (i.e., power) emitted by various objects per unit wavelength
per unit surface area. The horizontal coordinate is wavelength. We show a 30,000
K star, the Sun (5,800 K), a 1,000 K brown dwarf star, and a human (310 K).
Wavelengths corresponding to X-rays, UV, visible light (rainbow-colored bar),
infrared, and microwaves (μwaves) are shown.
Photo credit: Michael A. Strauss

The hot Sun emits radiation at a temperature of about 5,800 K.
The distribution was figured out by Max Planck. It peaks in the
visible part of the spectrum, and that’s no accident—our eyes have
evolved to detect the maximum amount of sunlight out there. To
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compare with other stars, let’s pick an average square meter to use
as an example. The actual size of the patch doesn’t matter, as long
as we use the same size patch from one example to the next.
Sometimes people say we have a yellow Sun, but it’s not yellow. If
you want to call it yellow because it peaks near yellow, you could
justifiably argue that it peaks at green, but no one says we have a
green star. Besides the yellow, you must add in as much violet,
indigo, blue, green, and red light as the curve shows the Sun is
emitting. Add them all together, and you have about equal amounts
of every one of these colors. Think back to Isaac Newton. What is
this? White light. If you pass equal amounts of the colors of the
visible spectrum back through a prism, what will emerge is white
light. Newton actually did this experiment. Therefore, the Sun,
radiating roughly equal amounts of all these colors, gives us white
light. No matter how the Sun is drawn in a textbook, no matter what
people in the street tell you, we have a white star—it’s just that
simple. By the way, if the Sun were truly yellow, then white surfaces
would look yellow in full sunshine, and snow would look yellow
(whether or not you were near a fire hydrant).

The Sun’s surface temperature is about 5,800 K. Temperature on
the Kelvin scale (K) is Celsius (C) plus 273. Ice freezes at 0° C (or
273 K). Water boils at 100° C (or 373 K). Celsius and K values are
separated by only 273, and as we get to higher and higher
temperatures, tracking that difference becomes less and less
meaningful. In any case, 5,800 K is very hot. It will vaporize you.
And to round things out, 0 K (you may have heard it called absolute
zero) is the coldest possible temperature. Molecular motion stops at
0 K.

Let’s find another star. Here is a “cool” one that checks in at a
mere 1,000 K (see figure 4.4). Where does the 1,000 K star peak? In
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the infrared. Can your eyes see infrared? No. Is this star invisible?
No. A small part of the star’s radiation emerges in the visible
spectrum. The intensity is falling sharply in the visible part of the
spectrum as one goes from red to blue—it is emitting much more
red light than blue light. This star will look red to our eyes. Now let’s
look at a star with a temperature of 30,000 K. As a reminder, I am
asking the same kind of questions about its light distribution that we
asked about the age distribution for students in a college class.
Where does that star peak? In the ultraviolet. It gives off more UV
than any other kind of light. We can’t see ultraviolet, but can you
see this star? Of course you can. It’s got a lot of energy coming out
in the visible part of the spectrum, too, with more energy emerging
in the visible part of the spectrum per square meter of its surface
than the Sun emits. Unlike the Sun, however, its mixture of colors
isn’t equal, but rather it’s tipped toward the blue. If I add its colors
together, I will get blue. Blue hot is in fact the hottest of hots. All
astrophysicists know that the coolest glowing temperature is red,
and the hottest glowing temperature is blue. If romance novels were
astrophysically accurate they would describe “Blue-Hot Lovers,” not
“Red-Hot Lovers.”

Our 30,000 K star peaks in the UV. If I picked an even hotter star,
its color would also be blue. A blue color just means that the blue
receptors in your eye are getting more radiation than your green or
red receptors. A 30,000 K star is blue, a 5,800 K star is white, and a
1,000 K star is red.

How about the human body? What temperature are you? Unless
you have a fever, you are 98.6° F, or about 310 K. The spectrum of
your emission peaks in the infrared. How much visible light do you
give off normally? You can see other people with your eyes, only
because they reflect visible light. But if you turn off all the lights in a
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room, everything goes black. You can’t see the people. You’ll notice
that if the lights are off, the curve for 310 K tells us that humans
give off virtually no radiation in the visible. But they, being at a
temperature of 310 K, are still emitting infrared light. Bring out an
infrared camera, or infrared night goggles, and you can see the
people, radiating strongly in the infrared. We put the whole universe
on such a chart in the next chapter.
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5
HOW STARS RADIATE

ENERGY (II)
NEIL DEGRASSE TYSON

I’d like to plug you into the rest of the universe. In chapter 4, we
looked at curves showing the thermal emission of radiation from
stars. Figure 5.1 is similar, except that we have added something.
The vertical coordinate is intensity (power per unit surface area per
unit wavelength), and the horizontal coordinate is wavelength—
increasing to the right. The interval of wavelengths that we call
“visible light” is identified with a rainbow-colored bar as before.

This figure shows thermal emission curves for the Sun at 5,800
K, a hot star at 15,000 K, a cooler one at 3,000 K, and a human at
310 K. The human emission curve peaks at about 0.001 centimeters.
Way below this curve and off to the right is something new, an
emission curve whose temperature is 2.7 K, which is the
temperature of the whole universe! That’s the famous background
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radiation coming to us from all parts of the sky. Because it peaks in
the microwave part of the spectrum, it is called the cosmic
microwave background (CMB). It was discovered in New Jersey, at
Bell Laboratories, in the mid-1960s. Arno Penzias and Robert Wilson
used a radio telescope—they called it the “microwave horn antenna.”
When they aimed it up at the sky, no matter which direction they
pointed, they detected this microwave signal, from everywhere in
the sky, which corresponds to something radiating at a temperature
of about 3 K (the modern, more accurate, value is 2.725 K). And it’s
the thermal radiation left over from the Big Bang. We will have much
more to say about this in chapter 15.
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FIGURE 5.1. Thermal emission in the universe. The spectra of blackbodies of
different temperatures, as a function of wavelength. The vertical coordinate plots
energy per unit time (i.e., power), per unit wavelength, emitted per unit surface
area of the object at the quoted temperature; the units are arbitrary. The curves
correspond to stars of surface temperature 15,000 K (which will appear blue-
white), 5,800 K (the Sun, which appears white), and 3,000 K (which will appear
red). The visible part of the spectrum is shown as a colored bar; also shown is a
human (310 K) and the cosmic microwave background (CMB, 2.7 K), about which
we will learn much more in chapter 15.
Photo credit: Michael A. Strauss



95

As before, we can query these graphs in different ways. Where
does each curve peak? They peak in different places. How much
total energy is emitted per second? We need a way to add up the
area under each curve to determine how much total energy is being
emitted per second. First, we need to define some terms.

A blackbody is an object that absorbs all incident radiation. A
blackbody that is at a certain temperature will emit what we call
blackbody radiation, which follows the curves we’ve been showing.
The term “blackbody” looks like a misnomer, but it is not. We agree
that these stars aren’t black: one star glows blue, one star glows
white, and one star glows red. Yet all qualify as blackbodies, as I’ve
drawn them in the figure. A blackbody is quite simple; it eats any
and all energy hitting it. I don’t care what you feed it—that doesn’t
matter—it will eat it. You can feed it gamma rays or radio waves.
Black things absorb all energy that falls on them. That’s why black
clothing is not a common fashion option in the summer. Blackbodies
then reradiate these curves—it is that simple. The curve’s shape and
position depend only on the temperature of the blackbody.

You can heat something, increase its temperature, and all you
need to do is ask, what is your new temperature? Then, return to
your curves, and see where this new temperature fits in. I have a
wonderful equation that describes these curves. They are
distribution functions, called Planck functions, after Max Planck,
whom we’ve met previously, and who was the first person to write
down the equation for these curves. To the right of the equal sign,
we have energy per unit time per unit area coming out per unit
wavelength interval at a particular wavelength λ; we call this
quantity intensity (Iλ), which depends only on the temperature T of
the blackbody:
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Iλ(T) = (2hc2/λ5)/(ehc/λkT – 1)

Let’s understand the parts that make up this landmark equation.
First of all, λ (lambda) is wavelength, no secrets there. The constant
e is the base of the natural logarithms, and it has its own button on
every scientific calculator, which is usually shown as ex (“e to the x”).
The value of e is 2.71828 . . . ; it’s a number like π whose digits go
on forever. It’s just a number. The letter c is the speed of light,
which we’ve seen before. The letter k is the Boltzmann constant.
The letter T is simply temperature, and h (introduced in chapter 4) is
Planck’s constant. If you assign a temperature T to an object, the
only unknown in this equation is λ, the wavelength. So, as you run λ
from very small values to very large values, you get a value for
intensity Iλ as a function of wavelength that will precisely track these
curves. Max Planck introduced this equation in 1900, and it
revolutionized physics.

With his new constant, Planck gave birth to the quantum, which
makes Max Planck the first parent of quantum mechanics. Look at
just the first term in parenthesis, which is 2hc2/λ5. As wavelengths
get longer, what happens to the energy being emitted? It drops. The
1/λ5 term goes to zero as λ becomes large. For large λ, the term hc/
λkT becomes small. Mathematicians will tell you that e x becomes
approximately 1 + x as x becomes small. So for large λ, the term
hc/ λkT becomes small, and ehc/λkT is approximately 1 + hc/λkT, and
if we subtract 1 from that it makes the term (ehc/λkT – 1) equal to
hc/λkT . Thus, in the limit as λ becomes large, the whole expression
becomes Iλ(T) = (2hc2/λ5)/(hc/λkT) = 2ckT/λ4. People were familiar
with this relation before Planck. It is called the Raleigh-Jeans Law
after its inventors Lord Raleigh and Sir James Jeans. As λ gets larger
and larger the intensity Iλ starts dropping off, like 1/ λ4 in a very
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well-defined way. What happens when you move toward smaller and
smaller wavelengths? As λ4 gets smaller and smaller, 1/λ4 gets
bigger and bigger, making the equation blow up (and disagree with
experiments). This was once called “the ultraviolet catastrophe.”
Something was wrong. Wilhelm Wien figured out a law that had an
exponential cutoff at small wavelengths that fit the data at small
wavelengths but didn’t fit the data at large wavelengths. We had no
real understanding of these blackbody curves until 1900, when Max
Planck found a formula that fit at both the small and large
wavelength limits and everywhere in between. The formula includes
a constant h that quantizes energy, so that you only get energy in
discrete packets. If you get it in discrete packets, then as you get to
smaller and smaller wavelengths, the exponential in Planck’s formula
kicks in and squashes the 1/λ5 term. When λ gets small, hc/λkT gets
big, and e raised to that power (ehc/λkT ) gets really big, really fast. It
dominates the –1, so that you can forget about the –1 term, and
with the ehc/λkT in the denominator, the answer gets small. It’s a
contest between these two parts of the equation: the 1/λ5 term and
the 1/ehc/λkT term. As λ goes to zero, the 1/ehc/λkT goes to zero much
faster than the 1/λ5 term is blowing up, making the whole curve go
to zero. Without the exponential term, the formula would blow up to
infinity as the wavelength went to zero, and we knew from
experiments that this was not the way matter behaved. The
quantum was needed to understand thermal radiation, and this
equation captures how these curves work.

The formula’s got it all. It can tell you where the curve peaks.
Isaac Newton invented math that allowed you to figure out where a
function peaks: it’s where the slope of the curve goes to zero at the
curve’s maximum. You can use Newton’s calculus to take the
derivative of the function and determine this location. When we do
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that, we get a very simple answer: λ peak = C/T, where C is a new
constant, which we can find from the constants in the initial
equation: C = 2.898 millimeters when T is expressed in kelvins.
Where is the peak? If the temperature is T = 2.7 K, as in the CMB,
then λ peak is a little over 1 millimeter or 0.1 centimeter. We can
confirm this by checking the CMB curve in figure 5.1. The human is
about a hundred times hotter than that; the human emission peaks
at about 0.001 centimeter (also shown in figure 5.1), in the infrared.

It’s beautiful. As temperature gets higher, the wavelength at
which the curve peaks gets smaller and smaller. That is borne out
just by looking at how this equation λ peak = C/T behaves. With T in
the denominator, it says that something twice as hot will peak at
one-half the wavelength. (Wilhelm Wien figured this out—we call it
“Wien’s Law.”)

How do I get the total energy per unit time per unit area coming
out from under one of these curves? I want to add up the
contributions from all the different wavelengths, the total area under
a particular curve. I can use calculus again and integrate to find the
area—once more, thank you, Isaac Newton. If we integrate the
Planck function over all wavelengths, we get another beautiful
equation:

Total energy radiated per second, per unit area = σT4, where σ =
2π 5k4/(15c2h3) = 5.67 × 10–8 watts per square meter, with the
temperature T given on the Kelvin scale. This law is called the
Stefan–Boltzmann law. Josef Stefan and Ludwig Boltzmann were two
towering figures in nineteenth-century physics. Sadly, Boltzmann
committed suicide at age 62. But we have this law. If we integrate
the Planck function, we get the value of the constant σ (Greek
sigma). That’s profound. How did Stefan and Boltzmann figure out
this law, when Planck had not yet derived his formula? Stefan found
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it experimentally, while Boltzmann derived it from a thermodynamic
argument.

With total energy radiated per second per unit area = σT4, if I
double the temperature, the energy flux being radiated increases by
a factor of 24 = 16. Triple the temperature and what do you get? 34

= 81. Quadruple the temperature: 44 = 256. And that trend is borne
out in figure 5.1, which shows how much bigger these curves
become as the temperature increases.

Here’s one way to remember why this formula works: Imagine
taking some thermal radiation and putting it in a box. Now slowly
squeeze the box until it has shrunk by a factor of 2. The number of
photons in the box stays the same, but the volume of the box
shrinks by a factor of 8, making the number of photons per cubic
centimeter in the box go up by a factor of 8. But squeezing the box
shrinks the wavelength of each photon by a factor of 2 as well. This
makes the thermal radiation in the box hotter by a factor of 2,
because its peak wavelength has shrunk by a factor of 2. It also
doubles the energy of each photon, doubling the energy in the box.
The increase in energy for each photon comes from the energy you
invest in squeezing the box, pushing against the radiation pressure
inside. That means that the energy density in the box is 8 × 2 = 16
times what it was before, and 16 equals 24. Therefore, the energy
density of thermal radiation is proportional to the fourth power of
the temperature, or T4.

Let’s define some additional terms. Luminosity is the total energy
emitted per unit time by a star. Luminosity is measured in watts, as
in a light bulb. A 100-watt light bulb has a luminosity of 100 watts.
The Sun has a luminosity of 3.8 × 1026 watts. It’s a potent light
bulb.
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I propose a puzzle. Suppose the Sun has the same luminosity as
another star that has a surface temperature of 2,000 K. How hot is
the Sun? For this example, let’s just round the temperature to 6,000
K. The other star is only 2,000 K, so I know if it is that much cooler,
it cannot be emitting nearly as much energy per unit area per unit
time as the Sun, but then I declare that the Sun has the same
luminosity as this star—how is that possible? I take that other star
and I get a 1-square-inch patch of it, a 2,000 K patch, and I get a 1-
square-inch patch from the Sun, at 6,000 K—three times hotter. How
much more energy per unit time is being emitted by a 1-square-inch
patch on the Sun than by a 1-square-inch patch on the other star?
Eighty-one times more energy. How can this other star be emitting
the same total energy per second as the Sun? Something else must
be different about these two stars besides their temperatures for
them to be equal at the end of the day. The other star, the cool star,
must have much more surface area from which to radiate than does
the Sun. In fact, it must have 81 times the surface area of the Sun.
It must be a red giant star, with 81 times the surface area to make
up for its deficiency in each little square-inch tile on its surface. Now
let’s use our equations. What is the surface area of a sphere? It’s
4πr2, where r is the radius of the sphere. You may have learned that
equation in middle school. What comes next is so beautiful. If
luminosity is energy emitted per unit time, and the energy emitted
per unit time per unit area is equal to σT4, then I have an equation
for the luminosity of the Sun:

LSun = σTSun
4 × (4πrSun

2).

I have a similar equation for the other star. Let’s denote the other
star’s luminosity by an asterisk, L*. The equation for its luminosity is
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L* = σT*
4 × (4πr*

2). Now I have an equation for each of them.
Furthermore, I have declared that LSun is equal to L*. I have declared
that, in posing the example, I don’t actually need to know the
surface area of the Sun, because this problem is talking about the
ratios of things. We can get tremendous insight into the universe
simply by thinking about the ratios of things.

Let’s divide the two equations: LSun / L* =
σTSun

4 × 4πrSun
2/(σT*

4 × 4πr*
2). What do I do next? I cancel

identical terms in the numerator and denominator of the fraction on
the right side of the equation. First, I’ll cancel out the constant σ.
I don’t even care what its particular value is, because when I’m
comparing two objects and the constant shows up for both stars, I
can cancel the constants out. The number 4 cancels, and π cancels
too. Continuing, on the left of the equation, what is LSun/L*? It is 1,
because I stated that the two stars have equal luminosities; their
ratio is 1. So, I am left with a simpler equation: 1 = TSun

4rSun
2/T*

4r*
2.

The temperature of the Sun is 6,000 K, and the temperature of the
other star is 2,000 K. Of course, 6,0004 divided by 20004 is the same
thing as 34, which is 81. Now I have 1 = 81rSun

2/r*
2. Let’s multiply

both sides of the equation by r*
2. Thus, r*

2 = 81rSun
2 . Take the

square root of both sides of the equation: r* = 9rSun. The radius of
the cooler star with the same luminosity as the Sun is 9 times that of
the Sun! That’s our answer. If we are thinking in terms of area, this
star has a surface area 81 times as large as that of the Sun, because
the square of the radius is proportional to the area. These are
immensely fertile equations.

I could have given a different example. I could have started with
a star of the same temperature as the Sun, but 81 times as
luminous. Both stars have the same amount of energy coming out
per second per square inch of surface, so the other star must have
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81 times the surface area of the Sun and 9 times the radius of the
Sun. The equation has the same terms, but we’re putting different
variables into different parts of the equation. That’s all we’re doing
here.

Recall (from chapter 2) that the hottest part of the day on Earth
is not at noon, but sometime after noon, because the ground
absorbs visible light. That visible light slowly raises the temperature
of the ground, and the ground then radiates infrared to the air. The
ground is behaving as a blackbody—absorbing energy from the Sun,
and then reradiating it according to the recipe given by the Planck
function. The ground has a temperature of roughly 300 K. (That’s
273 K plus the ground temperature in Celsius—if it’s 27° C, that
makes the ground an even 300 K.)

You can ask the question, what is your own body’s luminosity?
Plug in your Kelvin body temperature, which is 310 K, take it to the
fourth power, multiply by sigma—and you will get how much energy
you emit per unit time, per unit area. If you multiply that by your
total skin area (about 1.75 square meters for the average adult), you
will get your luminosity—your wattage. It is not coming out in visible
light. It is coming out mostly in infrared, but you for sure have a
wattage. Let’s get the answer. The Stefan–Boltzmann constant σ is
5.67 × 10–8 watts per square meter if the temperature is measured
in K. Multiply by (310)4. The value of 3104 is 9.24 × 109. Multiply
that by 5.67 × 10–8, giving 523 watts per square meter. Multiply by
your area of 1.75 square meters, and you get 916 watts. That’s a
lot. Remember, though, that if you are sitting in a room that is 300 K
(80° F), your skin is absorbing about 803 watts of energy, by the
same formula. Your body has to come up with about 100 watts of
energy to keep yourself warm. You get that by eating and
metabolizing food. Warmblooded animals that keep their body



103

temperature higher than their surroundings need to eat more than
coldblooded animals do. When you put air conditioning in a room,
there are two major questions to ask: How big is the room? What
other sorts of energy will be released in the room? This will include
asking, for example, how many light bulbs will be on in the room
and how many people will be in it, because every person is
equivalent to a certain wattage light bulb that the air conditioning
must fight against to maintain the temperature. To determine what
air conditioning flow is required to keep the proper temperature, you
have to account for how many people (with their watts) will gather
in the room.

Let me toss in one more notion, called brightness. The brightness
of a star you observe is the energy received per unit time per unit
area hitting your telescope. Brightness tells you how bright the star
looks to you. This depends on the star’s luminosity, as well as on its
distance from you. Let’s think intuitively about brightness. How
bright does an object appear to you? It should make sense to you
that if you see an object shining with a particular brightness and
then I move it farther away, its brightness will decrease. The
luminosity, however, is energy emitted per unit of time by the object;
it has nothing to do with its distance from you—it is simply what is
emitted. It has nothing to do with your measuring it. A 100-watt
light bulb has a luminosity of 100 watts, no matter where in the
universe you put it. However, brightness will depend on an object’s
distance from an observer.
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FIGURE 5.2. Butter gun. It can spray one slice of bread 1 foot away, four slices
of bread 2 feet away, or nine slices of bread 3 feet away. Credit: J. Richard Gott

Brightness is simple, and I love it. Are you ready? Let me draw a
contraption that I never built, but you can patent it if you like. It’s a
butter gun: you load it with a stick of butter and it has a nozzle at
the front where the butter sprays out (see figure 5.2).

Put a slice of bread 1 foot away from the butter gun. I have
calibrated this butter gun such that, at a distance of 1 foot, I butter
the entire slice of bread, exactly covering it. If you’re one of those
people who like to butter up to the edge, this invention is for you.
Now let’s say I want to save money, as any good businessperson
wants to do: I’d like to take the same amount of butter and butter
more slices of bread. But I still want to spread it evenly. The first
slice of bread was 1 foot away—now let’s go 2 feet away. The spray
of butter is spreading out. At twice the distance, the butter gun
covers an area that is two slices of bread wide and two slices of
bread tall. The spray covers a 2 × 2 array of slices, buttering 4 slices
of bread. Just by doubling the distance, you can now spray 4 slices
of bread. If I go three times the distance, you can bet that the spray
will cover 3 × 3 = 9 slices of bread. One slice, four slices, nine slices.
How much butter is one slice of bread 3 feet away getting compared
to the single slice only 1 foot away? Only one ninth. It is still getting
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butter, but only a ninth as much. This is bad for the customer but
good for my bottom line. I assert that there is a deep law of nature
expressed in this butter gun. If, instead of this being butter, it were
light, its intensity would drop off at exactly the same rate that this
butter drops off in quantity. After all, light rays travel in straight lines
just like the butter, and spread out in just the same way. At 2 feet
away, the light from a light bulb would be 1/4 as intense as it was at
1 foot away. At 3 feet away, it would be 1/9 as intense; at 4 feet
away, 1/16 as intense; and at 5 feet away, 1/25 as intense, and so
on. It goes as one over the square of the distance—an inverse
square. In fact, we have obtained an important law of physics,
telling us how light falls off in intensity with distance, the inverse
square law. Gravity behaves this way too. Do you remember
Newton’s equation, Gmam b/r

2? That r squared in the denominator
shows it’s an inverse-square relation, because it is behaving like our
butter gun. Gravity and butter are acting alike.

FIGURE 5.3. Sun in a sphere. The Sun’s rays spread out over an area of 4πr2 as
it passes through a sphere of radius r. Credit: J. Richard Gott
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Imagine a light source like the Sun emitting light in every
direction (figure 5.3). Let’s further imagine I surround the Sun with a
big sphere having a radius r equal to the radius of Earth’s orbit (1
AU).

The Sun is emitting light in every direction, and I am intersecting
some of the Sun’s light. I’m only getting a little piece of all the light
that’s penetrating a Sun-centered sphere with a radius equal to the
distance where I find myself. What is the area of that big sphere?
It’s 4πr2, where r is the radius of the sphere. Of all the light the Sun
emits, the fraction hitting my detector is equal to the area of my
detector divided by the area of that huge sphere (4πr2). If I move
twice as far away, my detector stays the same size, but the radius of
my sphere will be twice as big (2 AU), and the area the Sun’s rays
are passing through will be four times as great. I will detect one
quarter as many photons in my detector as I did when I was 1 AU
away. Brightness is given in watts per square meter falling on my
detector. To calculate the brightness that I observe at a radius r from
the Sun, I start with the Sun’s luminosity (in watts) and divide by
this spherical area—4πr2. This gives the watts per square meter from
the Sun falling on me. I multiply by the area of my detector (say, my
telescope), and I get the energy per second falling on it. If L is the
luminosity of the Sun, the brightness (B) of the Sun as seen by me is
B = L/4πr2, where r is my distance from the Sun. As my distance
increases, the denominator (4πr2) gets larger, reducing the
brightness. On Neptune, which is 30 times as far from the Sun as
Earth is, the Sun appears only 1/900 as bright as it does here.

Suppose two stars have the same brightness in the sky, but I
know that one is 10,000 times more luminous than the other. What
must be true about these stars? The more luminous star must be
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farther away. How many times farther away? 100 times. How did I
get 100? Yes, 100 squared is equal to 10,000.

You have just learned some of the most profound astrophysics of
the late nineteenth and early twentieth centuries. Boltzmann and
Planck, in particular, became scientific heroes for coming to the
understanding that you have just gotten in this chapter and the
previous one.
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6
STELLAR SPECTRA

NEIL DEGRASSE TYSON

What’s actually happening inside a star? A star is not just a flashlight
that you switch on and light emerges from its surface.
Thermonuclear processes are going on deep in its core, making
energy, and that energy slowly makes its way out to the surface of
the star, where it is then liberated and moves at the speed of light to
reach us here on Earth or anywhere else in the universe. It’s time to
analyze what goes on when this bath of photons moves through
matter, which doesn’t happen without a fight.

We first must learn what the photons are fighting on their way
out of the Sun. Our star, and most stars, are made mostly of
hydrogen, which is the number one element in the universe: 90% of
all atomic nuclei are hydrogen, about 8% are helium, and the
remaining 2% comprise all the other elements in the periodic table.
All the hydrogen and most of the helium are traceable to the Big
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Bang, along with a smidgen of lithium. The rest of the elements
were later forged in stars. If you are a big fan of the argument that
somehow life on Earth is special, then you must contend with an
important fact: if I rank the top five elements in the universe—
hydrogen, helium, oxygen, carbon, and nitrogen—they look a lot like
the ingredients of the human body. What is the number one
molecule in your body? It’s water—80% of you is H2O. Break apart
the H2O, and you get hydrogen as the number one element in the
human body. There’s no helium in you, except for when you inhale
helium from balloons, and temporarily sound like Mickey Mouse. But
helium is chemically inert. It’s in the right-hand column of the
periodic table: with an outer electron shell that’s closed—all filled up,
with no open parking spaces to share electrons with other atoms—
and therefore, helium doesn’t bond with anything. Even if helium
were available to you, there’s nothing you could do with it.

Next in the human body, we have oxygen, prevalent once again
from the water molecule H2O. After oxygen comes carbon—the
entire foundation of our chemistry. Next we have nitrogen. Leaving
out helium, which does not bond with anything, we are a one-to-one
map of the most abundant cosmic elements into human life on
Earth. If we were made of some rare element, such as an isotope of
bismuth, you would have an argument that something special
happened here. But, given the cosmically common elements in our
bodies, it’s humbling to see that we are not chemically special, but
at the same time, it’s quite enlightening, even empowering, to
realize that we are truly stardust. As we’ll discuss in the next few
chapters, oxygen, carbon, and nitrogen are all forged in stars, over
the billions of years that followed the Big Bang. We are born of this
universe, we live in this universe, and the universe is in us.
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Consider a gas cloud—something with the cosmic mixture of
hydrogen, helium, and the rest—and let’s watch what happens.
Atoms have a nucleus in the center composed of protons and
neutrons, with electrons orbiting them. It’s constructive, if pictorially
misleading, to imagine a simple, classical-quantum atom like Neils
Bohr proposed about a hundred years ago. It has a ground state,
the tightest orbit an electron could have: let’s call this ground state
energy level 1. The next possible orbit out would be an excited
state, and this would be energy level 2. Let’s draw a two-level atom
just to keeps things simple (see figure 6.1). An atom has a nucleus
and a cloud of electrons, which we say are “in orbit” around the
nucleus, but these are not the classical orbits that we know from
gravity and planets and Newton; in fact, rather than use the word
“orbits,” we introduce a new word derived from it: orbitals. We call
them orbitals, because they are like orbits, but they can take a
variety of different shapes. Actually they are “probability clouds”
where we are likely to find the electrons. Electron clouds. Some are
spherically shaped, some are elongated. There are families of them,
and some have higher energies than others. We are going to
abstract that and simply talk about energy levels, when we are
actually representing orbitals, places occupied by electrons
surrounding nuclei of atoms.
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FIGURE 6.1. Atomic energy levels. A simple atom is shown with two electron
orbitals, n = 1 and n = 2. If the electron starts further out in energy level 2, and
drops down to the lower energy level 1, it emits a photon with an energy ΔE = hν,
where ΔE = E2–E1 is the difference in energy between level 2 and level 1. After
the electron is in energy level 1, it can absorb a photon with energy ΔE = hν and
jump back up to energy level 2. Credit: Michael A. Strauss

The nucleus is the dot in the center. Energy level n = 1
corresponds to an electron in a spherical orbital closest to the
nucleus. Energy level n = 2 is a spherical orbital farther away from
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the nucleus. Energy level n = 2 corresponds to an electron that is
less tightly bound to the nucleus. Electrons and protons attract: it
takes energy to move the electron away from the nucleus to a more
distant orbital. Energy level 2 is higher in energy than energy level 1.

Suppose there is an electron sitting in the ground state, energy
level 1. This electron cannot hang out anywhere between energy
level 1 and 2. There is no place for it to sit. This is the world of the
quantum. Things do not change continuously. For the electron to
jump up to the next level, you have to give it energy. It must absorb
energy somehow, and for the moment, a nice source of energy is a
photon. A photon comes in, but it is not going to be just any photon.
It would only be a photon having energy equal to the difference in
energy between the two levels. If the electron sees it, it eats the
photon and jumps up to energy level 2. If the photon has slightly
more energy or slightly less energy, it goes right on by, unconsumed.
Now, unlike humans, atoms have no interest in staying excited—this
electron in energy level 2, if given enough time, will spontaneously
drop down to the lower energy level 1 (as shown by the blue arrow
in figure 6.1).

In some cases, enough time means a hundred millionth of a
second. Electrons don’t spend much time at all staying excited in an
atom. So, when they drop back down, what must happen? They
must spit out a photon—a new photon, of exactly the same energy
that entered the first time. Jumping up involves absorption of a
photon. Falling back down involves emission of a photon, as shown
in red in figure 6.1. The energy E of this photon, by Einstein’s
famous equation, equals hν, where h is Planck’s constant and ν is
the frequency of the photon. The energy of the emitted photon
exactly equals the energy difference between the two energy levels,
ΔE. (A capital Greek letter delta, Δ, commonly symbolizes a
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difference or change in a quantity.) This gives the equation ΔE = hν,
which allows us to calculate the frequency of the photon emitted
when the electron drops from level 2 to level 1.

Ever play with one of those glow-in-the-dark Frisbees? To make it
glow in the dark, you must expose it to some light first. You stick it
in front of a light bulb. What’s going on? The electrons embedded in
the toy’s atoms and molecules are rising to higher energy levels
(these larger atoms have many energy levels) as they absorb
photons of light. The designers chose material that takes some time
for these electrons to cascade back down, and as they do, they emit
visible light, but not forever. It stops glowing after the electrons have
descended back to their original states. Glow-in-the-dark Frisbees,
and those glow-in-the-dark skeleton costumes you had as a kid, all
operate on the same principle.

The energy an electron absorbs can come from a photon, but
there are other possible sources of that energy. The electron could
be kicked by another atom by bumping into it, and when it’s kicked,
the electron can be sent up to a higher energy level. In this case,
kinetic energy is doing the job. How does that work in a cloud of
hydrogen gas? First, we have to ask, what is the temperature of this
hydrogen cloud? The temperature in kelvins is proportional to the
average kinetic energy of the molecules or atoms in the cloud. The
bulk motion of the cloud is not contributing to this measurement.
Kinetic energy, of course, is energy of motion, so the higher the
temperature, the faster these particles are jostling back and forth. If
I’m an electron in the ground state, and I’m getting kicked in the
pants, I can ask what the energy is of that kick. If that kick, that
energy, would only get me part way up to energy level 2, I stay put.
But, if that kick is exactly the right amount of energy to reach the
second level, I’ll take that energy, absorb it, and jump up to level 2.
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Depending on the temperature, you can sustain an entire
population of atoms with some fraction of their electrons in a higher
state. You can keep it in equilibrium by arranging conditions so that
every time an electron drops, you kick it back up. It’s like the juggler
who is keeping all the balls in air. And it’s all a function of the
temperature. At low temperatures, the great majority of electrons
hang out in energy level n = 1 with only very few electrons in
energy level n = 2. As the temperature gets hotter, more electrons
get kicked up into energy level n = 2.

Let’s put all this together. Consider an interstellar gas cloud being
illuminated by the light from a 10,000 K star. Most atoms will have
multiple energy levels with great complexity; that’s the natural order
of things—by comparison, hydrogen’s energy levels are simple. It is
the mixture of all these that wreaks havoc on the pure thermal
spectrum that is emitted by the 10,000 K star. So let’s take a look at
what havoc is wrought.

First, I give you the full-blown hydrogen atom. It has an infinite
number of energy levels corresponding to concentric orbitals that go
farther and farther out: n = 1 (the ground level—innermost orbital),
n = 2 (the first excited level), n = 3, n = 4, n = 5, n = 6, . . . , n =
∞. The energy level diagram looks like a ladder, so we call it a
ladder diagram. The lower energy levels, which are more tightly
bound to the nucleus, are lower down in the diagram (figure 6.2).
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FIGURE 6.2. Energy level diagram for hydrogen. Horizontal lines indicate
different energy levels for the electron in a hydrogen atom, in electron volts (eV).
Arrows indicate transitions an electron can make from one energy level to another,
emitting a photon of energy equal to the difference in energy. Transitions are
shown to the first energy level (the Lyman series, which gives photons in the
ultraviolet part of the spectrum), to the second energy level (the Balmer series,
which gives visible light photons), and to the third energy level (the Paschen
series, in the near infrared). The diagram shows electrons dropping down and
emitting photons. If an electron is in level n = 3 and drops to level n = 2, as
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indicated by the red arrow, it will emit an Hα (Balmer series) photon with an
energy of 1.9 eV. Credit: Michael A. Strauss

For hydrogen, the first excited state n = 2 is three-quarters of
the way up, followed by n = 3, then n = 4, then n = 5, and so on.
The energy tops out at zero. An electron with a high n occupies a
very large orbital that is only weakly bound to the proton. In atoms,
we measure energy in electron volts, eV. That’s the energy it takes
to move an electron across a voltage difference of 1 volt. Let’s say
you have a flashlight that operates using a 9 volt battery. Each
electron generates 9 eV of energy in the form of light and heat as it
passes through the wires of the flashlight. This flashlight might be
passing 6.24 × 1018 electrons per second through its wires,
generating 9 × (6.24 × 1018) eV per second (or 9 watts) of light and
heat energy. One electron volt is thus a very small amount of
energy; it is just a convenient unit for talking about the small
amounts of energy associated with electronic transitions. For
example, –13.6 eV in the figure is the energy of level n = 1. This is
shown as a negative energy. You have to add 13.6 eV to that
electron in energy level n = 1 to remove it from the atom. We say
13.6 eV is the binding energy of the ground state n = 1. What
happens if an electron in the ground state sees a photon with
energy greater than 13.6 eV? Can it absorb that photon? Here
comes a photon with that much energy—what will the electron do
with it? If the electron absorbs this photon, it will have enough
energy to jump up above n = ∞. What is above n = ∞? That would
be freedom. If an electron pops up there to an energy above zero,
the electron escapes from the atom and leaves the proton by itself.
We say we have ionized the atom—stripped it of an electron. (The
atom now has a net charge, making it an ion.) The departed
electron has an energy above zero; that “excess” energy above zero
becomes its kinetic energy of motion as it escapes the atom. As you



117

might suspect, an atom can also get ionized by being slammed by
another atom.

With this knowledge of energy levels, we can now understand
how the light comes out of a 10,000 K star. At a temperature of
10,000 K, it is hot enough that a small but significant fraction of the
hydrogen atoms have electrons in the first excited state n = 2.
That’s why I chose this star, because a temperature of 10,000 K
maximizes the situation we are about to describe. Deep inside the
star there is this thermal radiation spectrum, a beautiful Planck
curve. It is trying to emerge from the outer layer of the star; that
smooth, 10,000 K thermal spectrum hits those hydrogen atoms in
the outer layer with some electrons in the first excited state, and
those electrons are hungry. I can ask the question, in that thermal
spectrum, how much energy do the individual photons have? The
energies of many of those photons are found in the visible part of
the spectrum, it just so happens, and the 10,000 K hydrogen gas
has some hungry hydrogen atoms with electrons in the n = 2 level,
and they are absorbing appropriate photons like mad and getting
kicked up to higher energy levels for having done so.

But not all photons are being absorbed—only those whose
wavelengths would kick an electron exactly up to a particular higher
energy level. For example, an electron in level n = 2 (at an energy of
–3.4 eV) can absorb a photon with just enough energy to make it
jump up to level n = 3 (at an energy of –1.5 eV; see figure 6.2). The
energy difference between those two levels is 1.9 eV. That’s how
much energy the electron must get to jump up. Such an electron will
absorb a photon with energy 1.9 eV. This photon is called an H-
alpha, or Hα, photon. It has a wavelength of 6,563 Ångstroms, or
656.3 nanometers—its color is Burgundy red. That photon gets
taken out, kicking an electron up from level 2 to level 3; that photon
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is now gone from the spectrum. Many electrons doing this causes a
dip in the Planck spectrum at a wavelength of 6,563 Ångstroms,
called an H-alpha (Hα) absorption line. Photons with a wavelength of
4,861 Ångstroms can boost an electron from level 2 to level 4; that
causes another dip in the spectrum called the H-beta (Hβ)
absorption line. There are more lines: H-gamma (Hγ) at 4,340
Ångstroms, H-delta (Hδ) at 4,102 Ångstroms, and so on, where
photons are being taken out, sending electrons from n = 2 to levels
n = 5, n = 6, . . . . In comes a continuous spectrum, out goes what
we call an absorption spectrum, with narrow lines knocked out
where those photons are getting eaten, making deep narrow valleys
in the spectrum that are called absorption lines. The entire group of
them is called the Balmer series: Hα, Hβ, Hγ, Hδ, Hε, followed by
H6, H7, H8, and so on (nobody is expected to remember that many
Greek letters). The spacing of these lines relates to those differences
in energy on the ladder diagram. Figure 6.3 shows the spectrum of
an actual 10,000 K star. The inset shows a close-up of the shorter-
wavelength portion.

If we look at a star whose surface is a bit hotter, say, 15,000 K,
the story changes dramatically: the electrons have so much energy
from getting kicked in the pants that they leave the hydrogen atoms
altogether: the electrons and the protons are running around
separately—the atoms have become ionized. Ionized hydrogen no
longer possesses discrete energy levels, and will no longer absorb
Balmer photons. This is why the Balmer series is seen strongly in
10,000 K stars but not in hotter stars.

So far, we have only been considering what happens to
hydrogen. Throw in calcium, and carbon, and oxygen, and
everybody is getting a piece of the action. I will give you my favorite
analogy—a tree. You can think of the outermost layer of the star as
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a tree. Do you know what is coming toward the tree (from inside the
star)? Mixed nuts. We have a mixed-nut cannon (the interior of the
star) firing mixed nuts (photons of different frequencies) into the
tree, and in the tree we have squirrels. My squirrels like acorns (Hα
photons)—these are acorn squirrels. They see all these mixed nuts
coming through, but they are only grabbing the nuts they like, the
acorns; on the other side (outside the star), out come mixed nuts
minus the acorns (the thermal radiation minus the Hα photons). Now
let’s bring in another species: let’s get some macadamia chipmunks.
What comes out the other side? Mixed nuts minus acorns and minus
macadamia nuts. For every species of rodent we stick in that tree,
each preferring to eat a different kind of nut, you can infer who is
hanging out in the tree based on what is missing on the other side,
if you know what they eat.
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FIGURE 6.3. Stellar spectrum showing Balmer absorption lines. Spectrum of an A
star from the Sloan Digital Sky Survey, showing the Balmer series of absorption
lines of hydrogen; they are called Hα, Hβ, Hγ, and so forth. The lines pile up at the
shortest wavelengths; the inset shows an expanded view, labeling the lines up to
H10 (by convention, numbers are used rather than Greek letters beyond Hε).
There is also one line due to singly ionized calcium, marked “Ca.” Credit: Sloan
Digital Sky Survey and Michael A. Strauss

This is precisely the problem we face in astrophysics. Because we
can’t go in the star (you wouldn’t want to go in there anyway; it’s
too hot), we analyze it from afar, observing the light to see what
gets taken out of the continuous thermal spectrum. We look at its
spectrum and ask, does it match the lines of hydrogen? Mostly, but it
has other elements too. Go to the lab, check out calcium, and the
other elements, to see what frequencies they absorb in a laboratory
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setting. Then check each element to see whether it matches this
star’s pattern, because each element leaves a unique fingerprint.
These energy levels, these ladder diagrams, are unique to each
element and molecule. (For example, figure 6.3 shows an absorption
line due to calcium, labeled Ca, in addition to the lines from
hydrogen.)

For the general case, let’s not even think of a star, but a cloud of
gas in interstellar space, a hydrogen cloud with a continuous
spectrum of energy coming in from a bright nearby star. Light from
the star enters the cloud and comes out on the other side, so there
is an absorption spectrum with lines missing. We must now account
for the energy somehow; light at those wavelengths got absorbed,
with electrons rising to higher energy levels. These electrons will fall
back down, emitting photons as they fall. Thus, it’s a temporary
affair between the electron and the photon. As the electron returns
to its original energy level, a photon just like the one the electron
absorbed gets sent out in a random direction. It’s as if the squirrels
and chipmunks had indigestion and spit out the nuts they had just
eaten in random directions. If the gas cloud is in equilibrium, with
the average number of electrons in level 2 unchanging in time, then
the number of nuts eaten and spit back out must be equal. If you
are in the line of fire of the cannon (looking along the line of sight to
the star), you will see an intense beam of mixed nuts from the
cannon coming at you, minus acorns and macadamia nuts. However,
if you stand at a random place looking at the tree but not in the line
of fire of the cannon (not along the line of sight to the star), you will
not see mixed nuts from the cannon, but looking just at the tree
(the gas cloud), you will see acorns and macadamia nuts flying out
of the tree. These will be bright emission lines at just those
wavelengths that were absorbed before. From the acorns and
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macadamia nuts you see, you can deduce that there are squirrels
and chipmunks in the tree. By analogy, the emission lines you see
emanating from the gas cloud can enable you to identify some of the
elements it contains. The picture of the Rosette Nebula in figure 6.4
shows that the nebula is red. The gas is emitting light in the
emission line of hydrogen-alpha (Hα) at a wavelength of 6,563
Ångstroms. So this cloud contains hydrogen. Astronomers can take
excellent pictures of emission nebulae like the Rosette Nebula using
a filter that only lets in the Hα wavelength. That way, almost all the
light from the rest of Earth’s atmosphere—the light pollution—is
blocked out. The light from the young bright blue stars in the center
of the Rosette Nebula (which you can see in the figure) bump its
hydrogen atoms up to level n = 3, and when they drop back down
to n = 2, they emit Hα photons in all directions, making the nebula
glow in red Hα light, in the same way a neon sign glows orange.

We have been discussing the family of transitions for hydrogen,
Hα, Hβ, Hγ, Hδ, and so on, called the Balmer series. This series of
transitions was discovered in 1885 and is named after Johann Jakob
Balmer, who figured them out. It doesn’t matter which way you draw
the arrowhead in the energy level diagram—it’s the same photon
coming in or going out. It can be absorbed (up) or emitted (down),
but all the transitions in the Balmer series have the first excited
state, n = 2, as the base, and the relevant photons find themselves
in the visible part of the spectrum (see figure 6.2, which shows the
emission of photons as electrons fall down). That’s why the Balmer
series was discovered first, because the Balmer photons are in the
visible region of the spectrum. But there are two other common
series we can refer to. One of them, the Paschen series, is based at
the n = 3 state. These are shorter jumps on the energy scale, so all
the participating photons will have lower energy than visible light
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(see figure 6.2). This lands the Paschen series entirely in the
infrared. Once we invented good detectors to reliably measure
infrared light, the Paschen series showed up. You should know that
these families continue, but I’m only going to mention three:
Paschen, Balmer, and one more, the Lyman series (as before, our
Greek letter nomenclature gives Lyman-alpha, Lyman-beta, etc.).
The ground state, n = 1, forms its base, and all its transitions are in
the ultraviolet. The lowest energy transition of the Lyman series has
a higher energy than the highest energy transition of the Balmer
series (see figure 6.2 again).
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FIGURE 6.4. Rosette Nebula, a star-forming gas cloud. The red color is due to
emission from hydrogen, specifically the n = 3 to n = 2 transition (Hα). Photo
credit: Robert J. Vanderbei

This means that when you look for those transitions in the
spectrum, the Balmer series is sitting there distinct from the other
series, the Lyman series is distinct, and the Paschen series is also
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distinct, which made them easy to isolate and understand. I could
draw an atom for which that is not the case. I can make up an atom
—we’ve got some strange atoms out there—for which the energy
jumps in its Lyman and Balmer and Paschen series might be similar,
such that these three families would overlap in a spectrum. When
thinking about these lines and how we decode them for yet-to-
identified elements, we must account for this possibility.

For thousands of years, all we could do was measure the
brightness of a star, its position on the sky, and maybe note its color.
This was classical astronomy. It became modern astrophysics when
we started obtaining spectra, because spectra allowed us to
understand chemical composition, and our accurate interpretation of
spectra came from quantum mechanics. I want to impress on you
the importance of this. We had no understanding of spectra until
quantum mechanics was developed. Planck introduced his constant
in 1900, and in 1913 Bohr made his model of the hydrogen atom,
with electrons in orbitals based on quantum mechanics, which
explained the Balmer series. Modern astrophysics really didn’t get
under way until after that, in the 1920s. Think about how recent this
is. The oldest people alive today were born when astrophysics was
starting. For thousands of years, we were essentially clueless about
stars, yet in one human lifetime we have come to know them well. I
have an astronomy book from 1900, and all it talks about is “here is
a constellation,” “there is a pretty star,” “there are a lot of stars over
here,” and “fewer stars here.” It has an entire chapter on Moon
phases, another whole chapter on eclipses—that’s all they could talk
about. Textbooks written after the 1920s, however, talk about the
chemical composition of the Sun, the sources of nuclear energy, the
fate of the universe. In 1926, Edwin Hubble discovered that the
universe is bigger than anybody had thought, because he revealed



126

that galaxies live far beyond the stars of our own Milky Way. And in
1929, he discovered that the universe is expanding. These leaps of
understanding happened in the lifetime of people alive today.
Extraordinary. I often ask myself, what revolutions await us in the
next several decades? What cosmic discoveries will you witness that
you can tell your descendants about?

With these lessons of history, you might just avoid making
bonehead predictions like that of the French philosopher Auguste
Comte, who, in his 1842 book, The Positive Philosophy, declared of
the stars: “We can never learn their internal constitution, nor, in
regard to some of them, how heat is absorbed by their atmosphere.”
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7
THE LIVES AND DEATHS

OF STARS (I)
NEIL DEGRASSE TYSON

Two astronomers working independently, Henry Norris Russell and
Ejnar Hertzsprung, decided to take all the known stars and plot their
luminosity versus their color (see figure 7.1). This graph is, not
surprisingly, called the Hertzsprung–Russell (HR) diagram. You can
quantify the colors of stars if you know their spectra. We know
today, as they knew then, that color is a measure of temperature
(through the Planck function). The vertical coordinate on the HR
diagram shows luminosity, and the horizontal coordinate shows color
or temperature, with the hottest (blue) stars on the left, and the
least hot (red) stars on the right.

Henry Norris Russell was chair of the Princeton astrophysics
department. By many accounts, he was the first American
astrophysicist. Because his early diagram showed temperature
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increasing toward the left, we follow that tradition today. He had
data on thousands and thousands of stars, obtained mostly by
women at the Harvard College Observatory, doing what most men
considered to be menial work, classifying spectra of all these stars.
That was back when the humans who did calculations were called
“computers.” People were computers. There was one large room—
filled with these women. Back then, around the turn of the twentieth
century, women weren’t professors and had no access to any of the
jobs that men coveted. But this room of computers included some
smart, motivated women who, in the analyses of these spectra,
deduced important features of the universe—features that you will
learn about in subsequent chapters. Henrietta Leavitt was among
them. Cecilia Payne also worked on spectra at Harvard for a decade
as Harlow Shapley’s assistant before eventually being appointed a
professor. She was also the one who discovered that the Sun is
made mostly of hydrogen. Astronomy, because of that peculiar
history, has a fascinating legacy of early contributions by women.



129

FIGURE 7.1. Hertzsprung–Russell diagram for stars. Luminosities of stars are
plotted against their surface temperatures. Note that by convention, surface
temperature decreases to the right. Stars with cooler surface temperatures are
red, while the hotter ones are blue, as indicated here. The shading indicates
where stars are commonly found. Stars lying along a particular labeled diagonal
line all have the same radii.
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Credit: Adapted from J. Richard Gott, Robert J. Vanderbei (Sizing Up the Universe,
National Geographic, 2011)

From catalogs of stellar luminosities and temperatures,
Hertzsprung and Russell started filling in the diagram. They
discovered that stars did not occupy just any place in this diagram.
Some regions had no stars—the blank places in this diagram—but
diagonally, right down the middle, a prominent sequence of stars
emerged. They called it the main sequence, as is the way of my
field, giving something the simplest possible name.

Ninety percent of the cataloged stars land in that zone. There’s a
smattering in the upper right corner. These stars have relatively low
temperature, yet they are highly luminous. If they have low
temperature, what color might they be? Red. How do you have a
low-temperature red thing that has extremely high luminosity? What
must be true about it? It must be huge. Indeed, these stars are big
red things. We call them red giants. Armed with our knowledge of
the Planck function, we know that they must be red and they must
be big. I live for power of deduction like that. Even higher on the
upper right are the red supergiants. We can now walk into a new
astronomical arena and analyze the whole situation armed just with
the physics you now carry on your utility belt. In fact, using the
Stefan–Boltzmann law and the radius r of the star, giving (L =
4πr2σT4), we can draw diagonal lines of constant size on the
diagram: 0.01 Sun diameters, 0.1 Sun diameters, 1 Sun diameter, 10
Sun diameters, and 100 Sun diameters. Now we know how big these
stars are. The Sun lies on the 1-Sun-diameter line, of course. Red
supergiants are larger than 100 Sun diameters. Below the main
sequence we find another group of stars. These are hot but not too
hot; that makes them white. They are extremely low in luminosity,
so they must be small. We call them white dwarfs. Some people in
the U.K. (like J.R.R. Tolkien) might prefer to say dwarves. But in
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America we form the plural of dwarf as dwarfs. Astronomers are not
alone in their preference. Disney’s 1937 film is Snow White and the
Seven Dwarfs, not Seven Dwarves.

At the time the HR diagram was published, classifying stars into
zones, we didn’t know why they grouped that way. Maybe a star is
born with high luminosity and over time, it gets progressively weaker
until it dies as a low-luminosity, low-temperature thing. Perhaps it
slides downward along the main sequence (simultaneously cooling
and losing luminosity) as it ages. A reasonable guess, but that kind
of reasoning led to an estimate for the age of the Sun of about a
trillion years, which was much larger than the age of Earth. For
dozens of years, we proposed educated guesses to answer the
question—until we figured out what was really going on. That insight
began by taking a look at some different kinds of objects in the sky
(figures 7.2 and 7.3).

These images show stars clustered together, officially called star
clusters. Some have a few hundred stars, others have hundreds of
thousands. If the number of stars is only a few hundred (like the
Pleiades in figure 7.2) we call it an open cluster; if the cluster has
hundreds of thousands of stars, it tends to be spherical or globe-
shaped, like M13 (in figure 7.3), and we call it a globular cluster.
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FIGURE 7.2. The Pleiades, an open star cluster. This is a young star cluster
(probably less than 100 million years old).
Photo credit: Robert J. Vanderbei

Globular clusters can have hundreds of thousands of stars, but
open clusters, up to a thousand. When you see one of these objects
in the sky, it’s clear and obvious which kind of cluster you’re looking
at. There’s no argument, because there is no middle ground: either
they have a few stars or they have a whole bunch. The stars in a
particular cluster have a common birthday—they formed from a gas
cloud all at the same time.

The Pleiades is a young star cluster—it’s like looking at a
kindergarten class. Young, bright, blue stars dominate the picture.



133

But the HR diagram for this cluster shows a complete main sequence
and no red giants. The blue stars at the top of the main sequence
are so bright that they dominate, but red stars lower down on the
main sequence are also in evidence. The Pleiades shows what an
ensemble of stars looks like soon after they’re born. From it, we can
see that some stars are born having high luminosity and high
temperature while other stars are born having low luminosity and
low temperature—they’re just born that way—along the entire main
sequence.

FIGURE 7.3. M13, a globular cluster.
Photo credit: Adapted from J. Richard Gott, Robert J. Vanderbei (Sizing Up the
Universe, National Geographic, 2011)
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Globular clusters like M13 show a main sequence minus an upper
end, plus some red giants, which are not part of the main sequence.
The picture of M13 is like looking at a fiftieth college reunion—all the
stars are old. The red giants are the brightest and dominate the
picture. M13’s main sequence still has low-luminosity, low-
temperature objects, but where did the bright blue ones go? Did
they exit the scene? What happened? You can probably guess where
they “went”: they became red giants. The upper part of the main
sequence was peeling away, with luminous blue stars becoming red
giants.

We also found middle-aged cases: clusters for which just part of
the upper main sequence was gone and only some red giant stars
had appeared.

To figure out the masses of different types of stars, we had to be
clever. We measured the Doppler shifts in the spectral lines of binary
stars as they orbited each other, and applied Newton’s law of gravity.
From this exercise, we discovered that the main sequence is also a
mass sequence, running from massive, luminous, blue stars at the
top left to low-mass, low-luminosity red stars at the bottom right.
Low-mass stars are born with low luminosity and low temperature,
whereas high-mass stars are born with high luminosity and high
temperature.

Massive blue stars on the upper main sequence live for perhaps
10 million years. That’s actually not much time. Around the middle of
the main sequence, a star like the Sun lives for 10 billion years, a
thousand times longer. Following the main sequence all the way
down to the bottom, the low-luminosity red stars should live for
trillions of years. We see 90% of stars on the main sequence. Why?
It turns out that stars spend 90% of their lifetimes with luminosity
and temperature that land them on the main sequence. Think of it
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this way: I know, or I am pretty confident, that you brush your teeth
in a bathroom every day. But if I take snapshots of you during the
day at random times, I’m not likely to catch you in the act, because
even though every day you spend some time brushing your teeth,
you don’t spend much time doing it. We’ve come to learn that for
some regions of the HR diagram that are sparsely populated, stars
are actually “passing through” those regions as their luminosity
and/or temperature changes, but they do so quickly, not spending
much time there. It is rare to catch stars in the act of brushing their
teeth.

What’s going on down in the center of stars? We agreed that as
you raise the temperature, particles move faster and faster. We also
agreed that 90% of the atomic nuclei in the universe are hydrogen,
the same percentage found in stars. Take a blob of gas that is 90%
hydrogen—it’s not a star yet. Let it collapse and form a star. As you
might suspect, the center becomes the hottest part of the star. If
you compress something it becomes hot. The centers of stars are
hot enough (as we shall see) to create a nuclear furnace that keeps
the center hot. It’s much less hot up on the surface. The centers of
stars are so hot that all electrons are stripped entirely from their
atoms, leaving their nuclei bare.

The hydrogen nucleus has one proton. When another proton
approaches it, the two protons repel one another. Protons are
positively charged, and like charges repel one another with a 1/r2

force. The closer they get, the harder they repel. But increase their
temperature. Higher temperature means larger average kinetic
energies, and higher velocities for the protons. Higher velocities
mean that the protons can approach closer to one another before
the electrostatic forces make them turn around. It turns out that
there is a magic temperature—about 10 million K—at which these
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protons are able to get so close together that a whole new short-
range, strong nuclear force takes over, attracting them and binding
them together, as I mentioned in chapter 1. This attractive nuclear
force, unknown a hundred years ago, must be quite strong to
overcome the natural electrostatic repulsion of the protons. What
else to call it other than the strong nuclear force? It’s what enables
what came to be called thermonuclear fusion. (The strong nuclear
force is also what holds more massive nuclei together. The helium
nucleus has two protons and two neutrons. The two protons repel
due to electrostatic repulsion; it is the strong nuclear force that
holds them in the nucleus. Similarly with the carbon nucleus [six
protons and six neutrons] and the oxygen nucleus [eight protons
and eight neutrons]).

The ensuing reaction when two protons come together at 10
million K is kind of fun. You end up with a proton and a neutron
stuck together—one of the protons has spontaneously turned into a
neutron—and a positively charged electron, called a positron, is
simultaneously ejected. That’s antimatter, exotic stuff. That positron
weighs the same as an electron, but when it meets up with an
electron, they annihilate, converting all their mass into the energy
carried away by two photons. This follows precisely Einstein’s mass-
energy equation E = mc2, about which Rich will have much more to
say in chapter 18. Also ejected is an electron neutrino, a neutral
(zero-charge) particle that interacts so weakly with other stuff in the
universe that it promptly escapes from the Sun. Notice that charge is
conserved in this reaction. We start with two positive charges (each
proton has one) and end with two positive charges (one on the
proton and one on the positron). The reaction creates energy,
because the sum of the masses of the original particles is more than
the sum of the masses of the particles at the end. Mass is lost,
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converted to energy via E = mc2. What is a nucleus with a proton
and a neutron? It has only one proton in it, so it is still hydrogen,
but now it is a heavier version of hydrogen. We often call it “heavy
hydrogen,” but it also has its own name, deuterium.

Now I have some deuterium. Deuterium plus another proton
gives me a ppn nucleus (two protons, one neutron) plus more
energy. What have I just made? I now have two protons in my
nucleus, and when you have two protons, it’s called helium. Helium
derives from Helios—the Greek god of the Sun. We have an element
named after the Sun. That’s because this element was discovered in
the Sun, through spectral analysis, before we discovered it on Earth.
This ppn nucleus is a lighter-than-normal version of helium, called
helium-3 because it has three nuclear particles (two protons and one
neutron). Now collide two of these helium-3 nuclei: ppn + ppn =
ppnn + p + p + more energy. This resulting ppnn is full, red-blooded
helium-4 (the normal helium you find in helium balloons).

All this goes on at 15 million K in the center of the Sun, which
converts 4 million tons of matter into energy every second. We came
to understand that stars in the main sequence are converting
hydrogen into helium. Eventually, the hydrogen in the core runs out,
and then, all heaven breaks loose: the star’s envelope expands, and
it becomes a red giant. About 5 billion years from now, our Sun will
become a red giant, throw off its gaseous envelope, and settle down
to become a white dwarf. More massive stars will become red giants,
and supergiants. They may explode as supernovae, with their cores
collapsing to form neutron stars or black holes. We will return to this
topic in chapter 8.

For now, let’s go back to the HR diagram. We have the main
sequence, red giants, and white dwarfs, with temperature increasing
to the left and luminosity getting higher as you go upward. Stars are
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given spectral classification letters. Some are relics from a pre-
quantum classification scheme in which they were actually in
alphabetical order, but the system is still in use: O B A F G K M L T Y.
Each letter designates a class of surface temperature for stars; the
Sun is a G star. Their approximate surface temperatures and colors
are:

O (>33,000 K, blue),
B (10,000–33,000 K, blue-white),
A (7,500–10,000 K, white to blue-white),
F (6,000–7,500 K, white),
G (5,200–6,000 K, white),
K (3,700–5,200 K, orange), and
M (2,000–3,700 K, red),

all of which are included in figure 7.1. Off to the right, beyond our
chart, would be the remaining classes: L (1,300–2,000 K, red), T
(700–1,300 K, red), and Y (<700 K, red). If you look at the
temperatures on the scale at the bottom of the figure, you can see
where these classes go. Spica is a B star, Sirius is an A star, Procyon
is an F star, and Gliese 581 is an M star. Each star has both a
horizontal position on the chart that shows its temperature (hotter
on the left, cooler on the right) and a vertical position that shows its
luminosity (increasing from bottom to top) . The Sun has exactly one
solar luminosity, of course, by definition, as can be seen by noting its
luminosity on the vertical scale. This is a logarithmic scale, allowing
us to plot the huge range of observed luminosities, with each tick
mark going up representing a star 10 times as luminous.

Along the top edge of figure 7.1 are stars with a million times the
Sun’s luminosity. At the bottom of the chart are stars with 1/100,000
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of the Sun’s luminosity. The range in luminosity among the main
sequence stars in the universe is staggering. We would eventually
figure out that stars at the top end of the main sequence are only
about 60 times the mass of the Sun, not a million times more
massive. At the bottom end, they are only about a tenth the mass of
the Sun, but as indicated, are much, much fainter than the Sun. So
the range of masses is large but not nearly as large as the range we
find in luminosities. In fact, we can give a formal relationship
describing how the luminosity depends on a star’s mass on the main
sequence, but it’s nonlinear: the luminosity is proportional to mass
raised to the 3.5 power. Which tells us that two stars of slightly
different mass will have very different luminosities.

Here is a cool calculation. Start with E = mc2. That’s one of the
first equations anybody ever learns in school. You know this
equation before you even know what it means. You learn it in third
grade perhaps, and find out Einstein came up with it. Good old
Albert, from work he did in 1905. The equation says, as we have
discussed, that a certain amount of mass can be converted into
energy through this relationship, in which c, the enormous speed of
light, gets squared, becoming very large indeed. Nuclear bombs owe
their power to what goes on in this equation. Rich will explore the
origins of this equation in Einstein’s theory of Special Relativity in
chapter 18.

If a star has a certain amount of mass and a certain amount of
luminosity, for how long will it stay alive? Of course, you can ask the
same question of your gas-driven car: you know the capacity of its
gas tank when you fill it up, and you also know its gas mileage, in
miles per gallon. From these facts, you can predict how far you can
go before your car runs out of gas. A star’s luminosity is its energy
emitted per unit time. If you multiply the lifetime ℓ of the star by its
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luminosity L, you will get the total energy it emits over its lifetime,
ℓ L. We know the luminosity of a star, the rate at which a star is
consuming fuel, and we know how much hydrogen fuel it has, so
what is the lifetime of a main-sequence star? That is, how long will it
stay on the main sequence? The total energy you can get out of a
star by fusing its hydrogen fuel is proportional to its mass M.
Remember E = mc2. Total energy emitted is proportional to M and is
also proportional to ℓL, so M is proportional to ℓL. That means ℓ  is
proportional to M/L. If L is proportional to M3.5, as I have said, then ℓ
is proportional to M/M3.5, which is the same as 1/M2.5. The more
massive a star is, the shorter will be its main sequence lifetime will
be!

Let’s see what that means. If the lifetime of a star is proportional
to 1/M2.5, then if I have a star that’s 4 times the mass of the Sun, its
lifetime should be 1/42.5 times as long as the Sun’s. Now 1/42.5 is
one divided by 4 squared times the square root of 4. The square
root of 4 is 2, and 4 squared is 16. Thus, this 4-solar-mass star has a
lifetime that is 1/32 of the lifetime of the Sun. The main-sequence
lifetime of the Sun is about 10 billion years. So, this 4-solar-mass
star will have a main-sequence lifetime only 1/32 of 10 billion years,
or about 300 million years. That’s short.

Another example: 1/402.5 is about 1/10,000, so if you have a 40-
solar-mass star, it will live only 1 million years—that’s tiny compared
to a billion years. Let’s take a step in the other direction. Consider a
star that has 1/10 the mass of the Sun. One over 1/10 is 10, and 10
raised to the 2.5 power is about 300. That star will live 300 times as
long as the Sun. What is 300 times 10 billion? It’s 3,000 billion, or 3
trillion years, much longer than the current age of the universe—
making that star very efficient in its fuel consumption. A 10-solar-
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mass star lives 1/300 as long as the Sun, whereas a 1/10-solar-mass
star lives 300 times longer.

Hydrogen fuses to form helium inside a star on the main
sequence. Stars do other stuff in their cores during their red-giant
phase. More fusing occurs, producing such elements as carbon and
oxygen, and others down the periodic table to iron (which has 26
protons and 30 neutrons). A star spends 90% of its life on the main
sequence, before it starts cranking out these additional elements as
a red giant. That last phase happens fast, occupying a mere 10% of
a star’s life. Every time you bring together light elements (lighter
than iron, number 26 on the periodic table) to make a heavier one,
all these reactions lose mass, and the fusion reaction progresses via
E = mc2 and emits energy. This fusion process is called exothermic,
because it gives off energy. But we know other nuclear processes
that give off energy as well. Take uranium (number 92), split its
nucleus into smaller ones, and that will be exothermic too. This was
done in World War II—the Hiroshima bomb was a uranium bomb;
the Nagasaki bomb used plutonium (number 94). Each of these
elements has a huge nucleus, and has isotopes (versions having the
same number of protons but different numbers of neutrons) that are
unstable. If you split them into parts, creating lighter elements,
energy is released. This is also exothermic and is called fission. Most
of the world’s nuclear arsenal going into the Cold War consisted of
fission bombs, whereas today, most of the power of our nuclear
arsenal resides in bombs that fuse hydrogen into helium. Just to put
their relative destructive energy in perspective, fusion bombs use
fission bombs as their trigger, giving a sense of how devastating
these fusion-based weapons really are. We know how efficiently they
convert matter into energy, and that’s exactly what stars do. The
Sun is one big thermonuclear fusion bomb, except its awesome



142

energy is contained by all that mass pressing down on the core. We
have not yet been able to make a contained nuclear fusion power
plant. All nuclear power plants in America, France, and other
countries are contained fission power plants.

You just can’t just split atoms and keep getting energy forever;
you can’t fuse atoms and get energy forever either. Figure 7.4
explains why. The horizontal axis shows the atomic number, the
number of nucleons (i.e., protons or neutrons) that each naturally
occurring element contains, and it starts at 1, hydrogen. Hydrogen’s
nucleus has one proton. The chart goes all the way out to 238,
uranium; its nucleus has 92 protons and 146 neutrons. Some
elements, like uranium, have different isotopes; uranium-235, which
has 92 protons and only 143 neutrons, is radioactive and highly
fissionable (it was the isotope used in the atomic bomb dropped on
Hiroshima). All the other elements lie between hydrogen and
uranium on the chart. Plotted vertically is the binding energy—
binding energy per nucleon. The larger the binding energy is, the
lower on the chart the element is placed.

To appreciate binding energy, imagine taking two magnets stuck
together with the north pole of one matched up with the south pole
of the other. In this configuration, you will need to invest energy if
you want to pull the magnets apart. Binding energy is what keeps
the two magnets together. Figure 7.4 shows hydrogen at the top of
the chart—zero binding energy. Hydrogen fusing into helium falls
down the hill, releasing energy. Helium has a larger binding energy
relative to hydrogen—it’s like being down in a valley relative to
hydrogen. Note the scale: these binding energies are large,
(measured in millions of electron volts per nucleon). Recall that we
introduced the electron volt (eV) in chapter 6. You have to add
energy to helium (over 7 million electron volts times 4 nucleons, or
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more than 28 million electron volts) to break it apart into hydrogen.
This curve dips in the middle to its lowest point. Uranium at the
right-hand edge of the diagram is higher than this lowest point in
the middle. If you are an element, you can undergo fission
exothermically, or fusion exothermically, until you land all the way
down at the bottom. Iron, with its 26 protons and 30 neutrons (i.e.,
56 nucleons), occupies that bottom spot. If I try to fuse iron, it goes
endothermic and absorbs energy. If I try to fission iron, it’s
endothermic again. The buck stops on iron: there is no more energy
to be released when you get to iron.
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FIGURE 7.4. Binding energy per nucleon of atomic nuclei. Only stable isotopes
for each element are shown. Binding energy is shown in millions of electron volts
per nucleon (i.e., proton or neutron). This represents the energy per nucleon that
would be released in creating this nucleus from free protons. The greater the
binding energy per nucleon (lower in the diagram), the less mass there will be per
nucleon in the nucleus (according to Einstein’s relation E = mc2). Credit: Michael
A. Strauss, using data from:
http://www.nndc.bnl.gov/amdc/nubase/nubtab03.asc; G. Audia, O. Bersillon, J.
Blachot, and A. H. Wapstra, Nuclear Physics A 729 (2003): 3–128
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Stars are in the business of making energy. If a star is cranking
along, fusing its elements down the line, and if it’s getting energy for
doing so, you have a happy star. The energy being generated keeps
the center of the star hot, and the thermal pressure of that hot gas
keeps gravity from collapsing the star under its own weight. Let’s say
I have a main sequence star ten times as massive as the Sun: it’s
mostly hydrogen and helium, and in its core it is still converting
hydrogen to helium; that’s Scene 1. By Scene 2, the core is now
pure helium, but it still has hydrogen and helium in the surrounding
envelope. Fusion stops in the center, and the center can’t hold the
star up anymore, so what does the star do? The star’s core
collapses, the pressure builds, and the temperature increases,
becoming hot enough to fuse helium. It takes a higher temperature
to bring helium nuclei together (ppnn + ppnn) than it does to bring
hydrogen nuclei together (p + p), because each helium nucleus
(ppnn) has two protons—doubling the number of positive charges
repelling one another. Continuing with Scene 2, helium fusion kicks
in (at 100 million K), keeping the star stable. In the middle of that
very hot core, helium is becoming carbon; outside the core, our
envelope has hydrogen fusion in a shell. Eventually, I get a ball of
carbon in the center, and the center is not hot enough to fuse
carbon, so the fusion stops. The core collapses further, the
temperature rises again, and carbon fusion begins. That’s Scene 3.
We now have carbon fusing to make oxygen in the center of the
carbon core in the center of the helium core, in the center of the
star’s envelope, which still has hydrogen and helium. We’re creating
an onion of elements, layer upon layer, because it’s always hottest in
the middle. Each reaction releases energy. Eventually, you get iron in
the middle, surrounded by successive shells of all the other lighter
elements. Therein sits the future chemical enrichment of the galaxy.
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But these elements are still locked inside a star, and they have to
get out of the star somehow, because we’re made of these
elements! We now know that since iron is the end of the road, once
iron accumulates in the core, the fusion stops, and the star
collapses. If it tries to fuse iron, doing so sucks energy out of the
star, collapsing the star even faster. Stars are in the business of
making energy, not absorbing it. As the core collapses faster and
faster, the star implodes, leaving a tiny, superdense neutron star in
the center, whose formation generates enough kinetic energy to
blow off the entire envelope and outer core of the star and causes a
titanic explosion, for several weeks shining billions of times brighter
than the Sun. The guts of this star are now released into the galaxy,
into what we call the interstellar medium, chemically enriching gas
clouds with heavy elements, enabling gas clouds to become
something more interesting than clouds of pure hydrogen and
helium.

Figure 7.5 shows a beautiful spiral galaxy M51, containing a
hundred billion stars, sitting there nicely (top view) until a star
explodes (in the bottom view). As we’ll see in chapter 12, we live in
a spiral galaxy, not unlike M51. Before the explosion (top) you can
see the galaxy and some foreground stars in the Milky Way, which
are much closer to us (and of course far less luminous) than the
galaxy. When one of these explosions goes off, we see a new star in
the galaxy (bottom), one that was not visible before and is by far the
brightest thing in the galaxy. It’s a single star. If you’re a planet in
orbit around that star, you’re toast. Quite simply, and quite literally.
We call these things supernovae. Nova means “new” in Latin, and it
meant a new star in the sky. We later learned that in a supernova,
we were seeing the death throes of a star. Not all stars can do this;
only relatively high-mass stars become supernovae, leaving tiny,
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incredibly dense neutron stars at the center when they blow off their
outer parts. Even higher-mass stars exist. And they explode too. But
when one of them collapses, the increase in gravity near the center
warps space so severely that it closes itself off from the rest of the
universe, and guess what you get: a black hole. A black hole may
sometimes form at the center while the envelope of the star is being
thrown off, also creating a supernova explosion.
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FIGURE 7.5. Spiral Galaxy M51 and supernova.
Photo credit: J. Richard Gott, Robert J. Vanderbei (Sizing Up the Universe, National
Geographic, 2011)

Stephen Hawking works on black holes; he has made major
discoveries about their strange behavior, and Rich will have much
more to say about black holes and Hawking’s discoveries in chapter
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20. The animated TV sitcom The Simpsons has given Stephen
Hawking the reputation of being the smartest person alive. Most of
us agree.

Now, let me tell you about star births. The Orion Nebula is a
stellar nursery; a gas cloud that has already been enriched with
heavier elements forged in the cores of a previous generation of
dying stars.

In the center of the nebula are bright, newly born massive O and
B stars. These O and B stars are radiating intensely in the ultraviolet.
This hot UV radiation has photons with enough energy to ionize
(strip the electrons off) the hydrogen gas near the center. The gas is
trying to form stars, but it’s being thwarted by the intense luminosity
from the high-mass stars in the center. Meanwhile, some of this
enriched gas is ready to make something more interesting than just
smaller balls of gas. It can also make balls of solid stuff that contain
oxygen, silicon, iron—things like terrestrial planets. Some nascent
stars are also forming planetary systems from the gas that swaddles
them. These are new solar systems being born from rotating disks of
material (see figure 7.6). And in the Orion Nebula it’s still happening
now. Some stellar nurseries are birthing thousands upon thousands
of solar systems. Our galaxy has 300 billion stars, many of them
likely surrounded by planets of their own.

How important are we in this picture? We’re quite small—
cosmically insignificant. A depressing revelation for some, who would
prefer to feel large. The problem is history. Every time we make an
argument that we’re special in the cosmos, either that we are in the
center or that the whole universe revolves around us, or that we are
made of special ingredients, or that we’ve been around since the
beginning, we learn that the opposite is true. In fact, we occupy a
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humble corner of the galaxy, which occupies its own humble corner
in the universe. Every astrophysicist lives with that reality.

Let me make you feel even smaller. In figure 7.7, taken by the
Hubble Space Telescope, all the smudges in the picture are entire
galaxies, so far away that each of them occupies only a small part of
the image. Each one of these smudges harbors more than 100 billion
stars unto itself. And this is just another small pocket of the
universe. This Hubble Ultra-Deep Field, as it is known, is the deepest
image of the universe ever acquired. It shows about 10,000
galaxies. This whole picture covers a patch of sky 1/65 of the area of
the full Moon, about 1/13 millionth of the whole sky. Since this spot
on the sky is not unusual, the number of galaxies we can see in the
whole sky is 13 million times as many as we can see in this picture.
That means 130 billion galaxies are within the reach of the Hubble
Space Telescope.
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FIGURE 7.6. Protoplanetary disks around newly formed stars in the Orion Nebula
taken by the Hubble Space Telescope. Photo credit: M. J. McCaughrean (MPIA), C.
R. O’Dell (Rice University), NASA
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FIGURE 7.7. Hubble Ultra Deep Field. This long-exposure photograph taken by
the Hubble Space Telescope shows about 10,000 galaxies. But it covers only about
1/13 millionth of the sky. Therefore, there are about 130 billion galaxies within the
range of this telescope over the whole sky. Photo credit: NASA/ESA/S.
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Beckwith(STScI) and The HUDF Team. Color representation by Nic Wherry, David
W. Hogg, Michael Blanton (New York University), Robert Lupton (Princeton)

In his book Pale Blue Dot, Carl Sagan noted that everyone we
ever knew, everyone we have ever read about in history, lived on
Earth, this one tiny dot in the universe—something I think about
often. I think about it, because your mind says “I feel small,” your
heart says “I feel small,” but now you’re empowered, and you’ll
continue to be empowered as this book unfolds, not to think small,
but to think big. Why? Because you’re now enlightened by the laws
of physics, the machinery by which the universe operates. In effect,
understanding astrophysics emboldens and empowers you to look up
in the sky and say, No, I don’t feel small, I feel large, because the
human brain, our three pounds of gray matter, figured this stuff out.
And yet, even more mysteries await me.
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8
THE LIVES AND DEATHS

OF STARS (II)
MICHAEL A. STRAUSS

In this chapter, we’re going to explore the nature of stars in a bit
more detail, building off what we learned in the last chapter. What
makes an object qualify as a star? An astronomer defines a star to
be a self-gravitating object that is undergoing nuclear fusion in its
core. Self-gravitating means that it holds itself together by gravity.
Earth also holds itself together by gravity. In fact, for an object as
massive as Earth, the strength of gravity is actually much greater
than the internal strength of rocks. We can see that by noticing that
the shape of Earth is spherical, just like it is for stars. Gravity pulls
everything together equally in all directions; the mark of an object
held together by gravity is its tendency to be spherical. Smaller
objects, such as asteroids, whose gravitational force is not as great,
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are held together by the tensile strength of their rocks or they are
irregular rubble piles, often quite lumpy and elongated (figure 8.1).

But for a large massive object like the Sun, gravity is so strong
relative to other forces that it compresses the mass into a spherical
shape—the most compact configuration. If a large self-gravitating
object is spinning rapidly, however, it will not be spherical; the
spinning causes it to flatten. Isaac Newton himself understood this.
Jupiter is spinning rather rapidly, and it is slightly elliptical as a
result; its equatorial radius is about 7% larger than its polar radius.
The most dramatic examples of flattened spinning objects are spiral
galaxies, which we discuss in chapter 13.
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FIGURE 8.1. The Sun (left) and Asteroid 25143 Itokawa (right), not to scale,
showing the different shapes of the two. The Sun, with a diameter of 1.4 million
kilometers, is pulled into a spherical shape by its own gravity. Note the dramatic
sunspots. The asteroid is only half a kilometer in diameter; its self-gravity is not
adequate to make it spherical; it is thought to be a loose agglomeration of
material that has accreted over time. The image of the Sun was taken by the Solar
and Heliospheric Observatory (SOHO), a spacecraft dedicated to observing the
Sun. The image of the asteroid was taken by the Hayabusa spacecraft launched by
the Japan Aerospace Exploration Agency (JAXA). Photo credits: Sun: NASA, from
http://sohowww.nascom.nasa.gov/gallery/images/large/mdi20031028_prev.jpg;
Asteroid Itokawa: JAXA, from http://apod.nasa.gov/apod/ap051228.html

If the gas in a star is held together by gravity, what keeps all that
gas from collapsing to a point? It is the internal pressure of the gas.

http://sohowww.nascom.nasa.gov/gallery/images/large/mdi20031028_prev.jpg
http://apod.nasa.gov/apod/ap051228.html
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Every parcel of gas feels gravity pulling it inward, and pressure
pushing outward, with the two forces balanced in equilibrium.

An analogy is a balloon: it is not held together by gravity, but
rather by the tension in the latex of the balloon. The balloon wants
to shrink like a rubber band, but as in a star, the pressure of the air
inside a balloon prevents it from shrinking. The air pressure and the
tension are in equilibrium, and the balloon holds its spherical shape.

The gas pressure inside a star increases as you go to the center
and decreases as you go out to larger radii. Gas pressure that
decreases with larger radius is familiar here on Earth. Here at sea
level, the atmospheric pressure is about 15 pounds per square inch;
this represents the weight of the total column of air sitting above
every square inch of Earth’s surface and extending to the top of the
atmosphere. As you go up in Earth’s atmosphere, more and more of
the atmosphere is below you, and the remaining column of
atmosphere above you pressing down on you weighs less. The air
pressure therefore decreases with altitude.

The pressure of the gas in a star is a reflection of its temperature
and density, both of which increase dramatically as you go toward
the center.

Now let’s go to the core. We can’t observe the core directly, but
we can infer its properties by writing down the equations of stellar
structure, which include the effects of pressure and gravity. These
equations incorporate the observation that the Sun is in equilibrium,
with gravity and pressure balanced throughout the star. These
calculations show that in the very center of the Sun, the temperature
is 15 million K, as we have discussed. This calculation also reveals
the density at the center to be about 160 grams per cubic
centimeter, 160 times denser than water. For comparison, the
densest naturally occurring element on Earth is osmium, at 22.6
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grams per cubic centimeter (about twice as dense as lead). With its
enormously high temperature, the gas in the core of the Sun is
ionized, meaning that the electrons are stripped from atoms, and the
nuclei and electrons are zipping around at high speed—this is called
a plasma. It is the pressure of these particles moving at high speed
that resists gravity, keeps the Sun from collapsing, and holds it in
equilibrium.

We’ve already seen that a basic property of material at a given
temperature is that it emits photons. This is true for the center of
the Sun as well, at 15 million K. The blackbody spectrum of an
object at this temperature peaks at X-ray wavelengths. Does this
mean that the Sun is shining brightly in X-rays? No. Consider an X-
ray photon emitted from the center of the Sun. Can it make its way
unimpeded from the center? When you go to the doctor’s office to
get an X-ray; they shield those parts of your body they don’t want to
X-ray with a blanket containing lead. Thus, a fraction of an inch of
lead, with a density of a measly 11.34 grams per cubic centimeter,
will absorb any X-rays that hit it. If that’s all it takes to absorb X-
rays, you can imagine that the X-rays coming from the center of the
Sun are not going to get very far. In fact, they travel only a fraction
of a centimeter before they are absorbed.

The energy of an absorbed photon has to go somewhere,
however. It heats up the material that absorbed it, which will then
radiate blackbody radiation—more X-rays to be re-emitted. So you
can think of our little photon as getting absorbed and getting
reradiated over and over again. When you work through all the
numbers, the time it takes for energy generated in the center in the
Sun to propagate to the surface is about 170,000 years. The
distance from the center to the surface is just 2.3 light-seconds, so if
that photon could travel unimpeded, it would take only 2.3 seconds
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to go from the center of the Sun to its surface. But because the
photon is getting jostled around, it makes a random, drunken walk,
being absorbed and re-emitted as it slowly wanders out from the
center of the Sun.

The original photon in the center is an X-ray photon, emitted by
gas at 15 million K. Will it still be an X-ray photon when it reaches
the surface? No; each time the energy is re-emitted, it is in the form
of photons appropriate for the temperature at that position in the
star. As the energy makes its way from the center to the surface, the
temperature drops, and individual photons lose their identity. The
energy becomes distributed among photons of lower energies,
corresponding to a lower temperature. So even though X-rays are
produced in the center, we don’t see X-rays from the surface. X-rays
are slowly degraded down to mere visible light photons, the kind
that we see coming from the surface of the Sun.

If there were no nuclear furnace in the center of the Sun to keep
the center hot and the pressure up, the Sun would slowly start to
shrink under the influence of gravity as it lost energy radiated from
its surface. This gravitational shrinkage, as the envelope of the star
falls toward the center, would generate energy, in exact analogy to
the way a piece of chalk gathers speed, and thus kinetic energy, as it
falls to the floor. That gravitational energy of contraction would, by
itself, be enough to keep the Sun shining at its current luminosity for
about 20 million years. Before Einstein, Hermann von Helmholtz (in
1856) hypothesized that this slow gravitational contraction was
actually the source of energy powering the Sun. This was plausible
at the time, since nuclear fusion was unknown and would not be
discovered for another 82 years. This mechanism implied that the
Sun had been shining as it is today for 20 million years at most. But
we now know, from dating via radioactive isotopes (e.g., noting how
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much uranium in particular rocks has decayed into lead), that Earth
is several billion years old. Moreover, fossils demonstrate that Earth’s
surface temperature has remained at least approximately constant
for a significant portion of that time. Thus, the Sun has been shining
more or less as it does at present for much longer than 20 million
years, and the gravitational contraction hypothesis for the Sun’s
energy generation cannot be true.

With the understanding of the significance of E = mc2, all was
answered. The Sun burns nuclear fuel in its center, providing energy.
This nuclear energy generation balances the luminosity given off by
the Sun and maintains its internal pressure. Thus the Sun is stable
and does not contract. Nuclear fusion is so efficient in generating
energy that the Sun has shone steadily for the past 4.6 billion years,
giving life on Earth a long period of stable conditions over which to
evolve. The Sun is now about halfway through its main sequence
lifetime.

By the way, how do we measure the basic properties of the Sun:
its radius, mass, and luminosity? To measure the Sun’s radius, we go
through a series of steps. We have known the radius of Earth since
the time of the Greek mathematician and geographer Eratosthenes,
about 240 BC. Every year at noon on June 21, the Sun passed
directly overhead at Syene, Egypt. Eratosthenes knew this fact. At
that same moment, he measured the Sun to be 7.2° off vertical in
Alexandria, which is directly north of Syene. Aristotle had argued
that Earth, no matter what its orientation, always casts a circular
shadow on the Moon during an eclipse of the Moon. The only object
that always casts a circular shadow is a sphere; thus, Eratosthenes
knew that Earth must be a sphere. He also understood that the 7.2°
shift in the altitude of the Sun, as measured from the two cities at
the same time, was due to the curvature of Earth’s surface, meaning
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that the two cities were separated by 7.2° of latitude, or about 1/50
of Earth’s entire 360° circumference. Hire someone to pace off the
distance from Alexandria to Syene, multiply by 50, and you have the
circumference of Earth—about 25,000 miles. Divide by 2π and you
have the radius. It was easy, once someone figured out how to do it!

From different observatories widely separated on Earth’s surface,
we get slightly different parallax views of Mars against the distant
stars. Knowing the radius of Earth and measuring that parallax shift
allows us to measure the distance to Mars. Giovanni Cassini was the
first to do this. Kepler’s work allowed us to plot the orbits of planets
to scale—to make a scale model of the solar system. Once you had
that one Earth–Mars distance, you could deduce the size of all the
orbits, including the radius of Earth’s orbit, the Astronomical Unit.
Thus, Cassini in 1672 determined that the distance from Earth to the
Sun was about 140 million kilometers—not far from the true value of
150 million kilometers.

We know the angular size of the Sun (about half a degree
across) as seen from Earth, and knowing the distance to the Sun,
we can determine the Sun’s radius. It is equal to the angular half-
diameter of the Sun in degrees (1/4°) divided by 360°, multiplied by
2π times the distance to the Sun. The radius of the Sun is about
700,000 kilometers, about 109 times larger than the radius of Earth.
The luminosity of the Sun is also straightforward: we can measure
its brightness as seen from Earth, and now that we know its distance
r, the inverse-square law allows us to determine its luminosity—
about 4 × 1026 watts.

We can also determine the mass of the Sun. Newton’s laws allow
us to figure out the ratio between the mass of Earth and that of the
Sun. We know the acceleration Earth produces at a distance of one
Earth radius (i.e., here on Earth’s surface), GMEarth/rEarth

2 = 9.8
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meters per second per second, which we can determine by watching
apples drop. We also know the acceleration the Sun produces at a
distance of 1 AU: GMSun/(1 AU)2 = 0.006 meters per second per
second, which we have already calculated in chapter 3. Take the
ratio of these two accelerations: 0.006 meters per second per
second/9.8 meters per second per second = 0.0006 = [GMSun/(1
AU)2]/[GMEarth/rEarth

2] = (MSun/MEarth)(rEarth/1 AU)2. Plugging in the
known values for the radius of Earth and 1 AU, and solving, we find
that the Sun has a mass of about 330,000 times that of Earth.
Because the constant G factors out of the ratio, we don’t have to
know it to find the ratio of the mass of the Sun to the mass of Earth.

But what is the mass of Earth in kilograms? We could solve for its
mass using the equation for the acceleration of gravity at the surface
of Earth, 9.8 meters per second per second = GMEarth/rEarth

2, if we
only knew the numerical value of Newton’s constant G. Henry
Cavendish —who discovered hydrogen, the most abundant element
in the universe—did a clever experiment to find the value of G. He
used a torsion pendulum to measure the ratio of the force exerted
on a test ball by Earth and the force exerted on it by a nearby 159
kilogram lead ball. Earth pulled the test ball downward, and the
nearby heavy lead ball pulled it to the side, and he could compare
the forces they exerted by measuring the angle of deflection
produced in the pendulum. Knowing the distances to the nearby lead
ball and to the center of Earth, and using Newton’s laws, he
determined the ratio of the mass of Earth and that of the lead ball.
This enabled Cavendish in 1798 to determine the value of Newton’s
constant G and find the mass of Earth in kilograms. Multiply by
330,000, and you have the mass of the Sun. It turns out to be 2 ×
1030 kilograms. That’s a lot!
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We’ve been focusing on the Sun here, but we’d like to
understand the nature of other stars as well. Just as we use the
orbit of Earth around the Sun to determine the Sun’s mass using
Newton’s laws, we can use observations of pairs of stars (“binary
stars”) orbiting each other to determine their masses.

The lowest-mass stars on the main sequence (which are M stars)
have a mass about 1/12 of that of the Sun. What about stars that
are even lower in mass? With lower gravity, they will have lower
temperature and lower density in the core. What happens when you
get a gaseous mass held together by gravity that is simply not hot
enough in its center for nuclear fusion of hydrogen to take place?
Such a star we call a brown dwarf (they are not really brown, but
actually appear very red and glow mainly in the infrared; sometimes
astronomical nomenclature can be a bit misleading). They exist but
are hard to find. Such stars are glowing feebly by the residual heat
from their gravitational collapse (just as Helmholtz had imagined for
the Sun); they have no significant internal nuclear furnace and are
of low luminosity. They are also cool, with surface temperatures
ranging from 600 K to 2,000 K, and thus their radiation is coming
out mostly in the infrared rather than the visible part of the
spectrum. By comparison, your oven at home gets up to 500 K. (A
little known fact: 574° F is also 574 K—the crossing point of these
two temperature scales.)

Most of our most powerful telescopes are sensitive to visible
light, and only in the past few decades have we built telescopes that
can survey the sky in infrared light (which turns out, for all kinds of
technical reasons, to be quite a bit more difficult). It’s only been with
the advent of powerful telescopes that are sensitive to infrared light
that astronomers have even been able to find such objects.
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The O, B, A, F, G, K, and M classes of stars have been around for
about 100 years, but since 1999, as we have discovered brown
dwarfs, we have added two new classes: L and T stars. Even more
recently, an infrared satellite called the Wide-Field Infrared Survey
Explorer has discovered still cooler stars, classified as Y stars, with
surface temperatures as low as 400 K, just a bit above the boiling
point of water. Brown dwarfs with masses between 1/80 and 1/12 of
the Sun (i.e., between about 13 and 80 times the mass of Jupiter)
feebly burn the trace amount of deuterium that exists in their cores.
Thus, since they do have some nuclear burning in their cores, they
are still are called stars. Objects of still lower mass, less than 13
times the mass of Jupiter, will have absolutely no nuclear fusion of
any sort in their cores. We call such objects planets!

Let’s consider the death of stars in greater detail than we did in
chapter 7. Even during its late main sequence phase, the Sun will
gradually increase in luminosity, and Earth’s oceans will boil away
about a billion years from now. This will represent the end of life as
we know it on Earth. Roughly 5 billion years from now, when no
more hydrogen remains in the Sun’s core (having all been turned
into helium), the Sun’s nuclear furnace turns off, and the pressure
that’s been holding up the star against gravity drops. Gravity wins,
and the star will start to collapse. But recall that it takes a couple of
hundred thousand years for energy generated in the core to make
its way out to the surface. The inner parts of the star will start to
collapse, even as energy is still flowing through the outer parts of
the star, holding them up. The outer parts of the star have a couple
of hundred thousand years before they get the bad news that the
energy source at the center of the Sun is gone.

Consider the hydrogen shell immediately surrounding the (now
pure helium) core. Outside the core, there is still plenty of hydrogen,
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but that region has so far been uninvolved in nuclear fusion, as its
density and temperature are simply too low. As this shell of
hydrogen collapses, however, it becomes hotter and denser. Very
quickly, its density and temperature get high enough to trigger the
fusion of hydrogen to helium in the shell. We have a new source of
fuel to run the nuclear furnace: hydrogen burning in a shell.

Suddenly, the star has a new lease on life. The rate of energy
production in the hydrogen-burning shell is enormous—much higher
than that of the core while the star was still on the main sequence.
Furthermore, the volume of the hydrogen-burning shell is much
larger than that of the core.

And so, for a brief period at least, the star produces a huge
luminosity, but it takes a long time for that radiation to get out, and
the increased pressure starts winning the tug-of-war with gravity. As
a consequence, the outer parts of the star expand (and cool
somewhat), even while the inner parts contract. The Sun becomes a
red giant, as discussed in chapter 7. Outside the hydrogen-burning
shell, the outer parts of the star have expanded to an enormous
radius, about 1 AU (or 200 times the current radius of the Sun).
About 8 billion years from now, tidal interactions with the Sun during
its red-giant phase will probably cause Earth to spiral into the
envelope of the Sun and burn up.

While the star’s hydrogen shell is burning, its helium core has no
internal energy source; gravity causes it to continue to contract and
thus heat up. When the temperature reaches about 100 million K in
the core of the star, the helium nuclei start fusing to make carbon
and oxygen nuclei. That helium-burning phase will last for about 2
billion years for the Sun, but eventually, the helium in the core will
all be depleted, and the core begins to collapse again.
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For stars of the mass of the Sun, we’re near the end of our story.
The outer parts of the star are far away from the core, and thus feel
only a weak gravitational pull. It takes only a bit more energy to
eject the outer parts of the star, which gently expand as a diffuse
gaseous envelope, revealing the hot dense carbon-oxygen core of
the star left behind. This ejected gas is excited by the ultraviolet
light of the central star, causing it to fluoresce, and making a nebula
like the Dumbbell Nebula pictured in figure 8.2. Such objects are
called, confusingly, planetary nebulae, because the first astronomers
to spy them through telescopes thought they looked something like
planets, and the name has stuck ever since. Astronomers have a
nostalgic tendency to keep names for things even when they are
outmoded and misleading.

This extended envelope of material, which used to be part of the
star itself, is now gently expanding outward. Stars sometimes blow
off their outer layers in complex ways, giving rise to planetary
nebulae with multiple shells of gas around them. Different layers are
coming from different depths inside the star, which may be enriched
in different elements. Rotation of the original star can cause the
layers to be blown out preferentially along the spin axis, as occurs in
the Dumbbell Nebula (see figure 8.2).

The now-exposed glowing core of the star is visible in the very
center of the nebula. It is small (about the size of Earth) and hot
enough to appear white; we thus call it a white dwarf. The white
dwarf has no internal source of energy, and thus slowly cools off
over billions of years. We still call a white dwarf a star, even though
it is not burning nuclear fuel. (I admit it: this nomenclature is not
totally consistent!)

What holds up the white dwarf against gravitational collapse?
The Pauli exclusion principle, named for physicist Wolfgang Pauli,
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states that no two electrons can occupy the same quantum state.
This is key for understanding the structure of atoms. In atoms
having many electrons, the electrons must stack up into higher
energy levels when the lower energy levels are filled. For white
dwarfs, the Pauli exclusion principle means that the electrons don’t
like to be squeezed too close together; this gives rise to a pressure
that holds the white dwarf up against gravity. Our Sun will end its
life as a white dwarf.

As described in chapter 7, stars more than 8 times as massive as
the Sun go through a much more dramatic series of reactions.
There’s enough mass in their cores for the carbon and oxygen,
which would otherwise sit inertly while the star quietly becomes a
white dwarf, to instead heat up enough to fuse into such elements
as neon, silicon, and the others all the way up the periodic table to
iron.
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FIGURE 8.2. The Dumbbell Nebula. This is a red giant star that has ejected its
outer layers, revealing its hot dense core. The core is a white dwarf star, seen at
the center, while the outer layers are fluorescing as a planetary nebula from the
ultraviolet light that the white dwarf emits. Photo credit: J. Richard Gott, Robert J.
Vanderbei (Sizing Up the Universe, National Geographic, 2011)

The outer layers of these more massive stars grow appreciably
larger than mere red giants. They become red supergiants, with radii
of several AUs.

In the night sky, some bright stars are clearly red to the naked
eye. Red stars that are on the main sequence have a low luminosity;
none are visible to the naked eye. In contrast, a red giant is large,
has a huge luminosity, and can be seen out to a great distance. All
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the bright red stars in the sky are either red giants (like Arcturus in
the constellation Boötes and Aldebaran in Taurus) or red supergiants
(like Betelgeuse in Orion).

Scientists overuse the prefix super-. We stick it in front of just
about everything, because we keep discovering or making things
that are even bigger or more spectacular than what we knew before:
supernovae, supermassive black holes, and, of course, the never-
completed particle accelerator known as the superconducting
supercollider! The most famous red supergiant in the sky is
Betelgeuse (pronounced “Beetlejuice”). It has a radius about 1,000
times as large as the Sun’s and has a mass of at least 10 solar
masses. In its core, helium is burning into carbon, oxygen, and
heavier elements. Outside the core is a thin shell of essentially pure
helium that is not hot or dense enough to burn yet, so it’s sitting
there more or less quiescent. Outside that is a shell of hydrogen
burning into helium, and outside that, the vast majority of the
volume of the star, is a huge extended envelope of hydrogen and
helium.

This story of the evolution of stars after the main sequence was
worked out in detail in the 1940s and 1950s, as people came to
understand the detailed nuclear physics that takes place in the cores
of stars and were able to use the first computers to solve the
relevant equations of stellar structure. Much of this work was done
at Princeton University, led by Professor Martin Schwarzschild. Neil,
Rich, and I had the opportunity to interact with him in his later
years; he was a wonderful man.

Figure 8.3 shows Schwarzschild with Lyman Spitzer and Rich
Gott. When Henry Norris Russell (of HR diagram fame) retired as
chair of Princeton University Observatory in 1947, he brought in two
young astronomers, Martin Schwarzschild and Lyman Spitzer, both in
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their early thirties. Spitzer, who became chair of the department,
went on to develop much of our modern understanding of the
interstellar medium (the gas and dust between the stars) and
founded the Princeton Plasma Physics Laboratory, where scientists
are working to harness nuclear fusion as a source of energy. Spitzer
will always be known to the public as the father of the Hubble Space
Telescope, having developed the initial concept and working for
decades to convince the astronomical community and the US
Congress that it should be built. Spitzer and Schwarzschild were the
core of the Princeton Astrophysics Department for the next 48 years.
They passed away within 11 days of each other in 1997, quite a
shock to all of us.

In the 1950s, Schwarzschild and his students worked out all the
details of the story I am describing. He was one of the first people
who understood the whole story of the evolution of stars. Martin’s
father, Karl Schwarzschild, played a key role in the study of black
holes; his name will come up again in chapter 20.

Continuing our story of stars, the pressure of electrons prevents
a white dwarf from collapsing. However, if the mass of the star’s
core is more than 1.4 solar masses, even this pressure is not large
enough to hold it up against gravity. Compressed by gravity, the
electrons and protons are pushed together to form neutrons
(releasing electron neutrinos in the process). This leaves us with a
neutron star—actually a giant atomic nucleus of mostly pure
neutrons. The Pauli exclusion principle holds for neutrons as it does
for electrons, and the resulting neutron pressure now supports the
star against gravity. However, as neutrons are much more massive
than electrons, the equilibrium size of a neutron star (about 25
kilometers) is much smaller than that of a white dwarf. Imagine
more than a solar mass of material squeezed into a volume the size



171

of Manhattan Island (or 100 million elephants in a thimble, from
chapter 1)! Neutron-star matter is the densest material we know of.
The center of a neutron star can have a density of almost 1015

gm/cm3.

FIGURE 8.3. Left to right: Lyman Spitzer, Martin Schwarzschild, and Rich Gott in
the 1990s.
Photo credit: Collection of J. Richard Gott

If the core of a massive star is more massive than about 2 solar
masses, the neutron star that tries to form is unstable to further
collapse; the neutron pressure is inadequate to hold the star up
against gravity, and a black hole forms. Whether the core collapses
to a neutron star or a black hole, the infalling material compresses
violently, triggering further nuclear reactions (remember that the
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material outside the core is still made up of elements lighter than
iron). The energy that is suddenly released can eject the entire
exterior of the star above the core, causing a supernova explosion.
Stars with initial masses on the main sequence greater than about 8
solar masses die by exploding as supernovae, forming either neutron
stars or black holes in the process. Massive exploding stars are
called Type II supernovae, as there is another type of stellar
explosion. Consider three stars orbiting each other, two of which are
white dwarfs. Gravitational interactions between them can cause two
white dwarf stars to collide. The heating due to the collision
detonates their nuclear fuel and produces a supernova. Alternatively,
a red giant star in a binary system can transfer mass onto a white
dwarf star, pushing it over the limit of 1.4 solar masses and causing
it to collapse, and a supernova ensues. Such explosions are called
Type Ia supernovae, to distinguish them from the explosions of
massive collapsing stars: we’ll return to them briefly in chapter 23,
as they become important tools to help us measure the accelerating
expansion of the universe.

In any case, in a supernova explosion, gas flies outward in all
directions. This is not a gentle process like the slow wafting away of
the outer parts of a planetary nebula. Rather, it is an extremely
violent explosion. Most or all of the star is destroyed in the
explosion, and material is sent out at speeds approaching 10% of
the speed of light. Heavy elements produced in the core of the star
are now returned to the interstellar medium, ready to be included in
the next generation of stars and planets.

In 1054, Chinese astronomers noticed a new star in the
constellation we call Taurus. The ancient Chinese were careful
observers of the sky, looking for portents of future events, so they
were particularly impressed by this “guest star,” which was visible for
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many weeks and was initially bright enough to be seen during the
day. Interestingly, there are no records in any European manuscripts
whatsoever that anyone living there had seen this thing, despite it
being the brightest object in the sky for weeks on end. Perhaps it
was cloudy for that entire period in Europe, or any written European
accounts were lost, or maybe the Chinese astronomers were just
paying much more attention to what was going on in the sky.

Images of the Crab Nebula in Taurus (figure 8.4) taken a few
decades apart clearly show that it is expanding. Given the observed
rate of expansion and its current size, we can work out when the
expansion must have started; the answer is about a thousand years
ago, just about the time the Chinese observed their “guest star.”
Thus the Crab Nebula, located in exactly the same region of the sky
that the Chinese records describe, is certainly the remnant of the
supernova they discovered. In a few hundred thousand years more,
this gas will have become so diffuse as to be essentially invisible, its
enriched gases having mixed with the interstellar medium.
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FIGURE 8.4. The Crab Nebula. This is the expanding remnant from a supernova
explosion (seen on Earth in 1054 AD).
Photo credit: Hubble Space Telescope, NASA

In the center of the Crab Nebula, a rapidly spinning neutron star
was discovered, rotating 30 times a second. When a star collapses, it
retains its angular momentum and begins spinning more rapidly, like
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an ice skater pulling in her arms. Its magnetic fields become
compressed and intensified as well. The magnetic field at the surface
of the Crab Nebula’s neutron star is about 1012 times stronger than
the magnetic field at the surface of Earth. As the neutron star
rotates, its north and south magnetic poles swing around, and the
neutron star emits radio waves in two beams like a lighthouse. Every
time the lighthouse beam swings past Earth, we see a pulse of radio
radiation. Thus, the neutron star is called a radio pulsar. The first
radio pulsar was discovered by graduate student Jocelyn Bell in
1967. It had a rotation period of 1.33 seconds. Her thesis advisor
Antony Hewish was awarded the Nobel Prize in Physics for the
discovery. I find it outrageous that she did not share in the prize.

The Crab Nebula pulsar emits electromagnetic radiation over the
full electromagnetic spectrum, from radio wavelengths all the way to
gamma-ray wavelengths. The pulsar can be seen blinking rapidly 60
times a second (as each of the two lighthouse beams sweep by us)
in visible light as well, but astronomers never noticed that until after
its radio pulses were discovered. It just looked like a faint star at the
center of the Crab Nebula. The Crab Nebula is about 6,500 light-
years away, which means that the explosion really occurred about
5445 BC, but it took the light until 1054 AD to reach us.

Recall the inverse-square law. The nearest star system is Alpha
Centauri, 4 light-years away. The Crab Nebula is very much farther
away, yet the supernova was much brighter than any star we see in
the night sky, being easily visible in the daytime. At its peak
luminosity, it was about 2.5 billion times as luminous as the Sun.

Supernovae are rare. The last time a supernova is known to have
gone off in the Milky Way was about 400 years ago, before Galileo
first pointed a telescope at the heavens. Thus, in 1987, astronomers
were particularly excited when they saw a supernova explode in the
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Large Magellanic Cloud, a small satellite galaxy of the Milky Way.
This was the closest supernova to go off in modern history. It was
bright enough to be seen with the naked eye, even though it was
150,000 light-years away. I was lucky enough to travel to Chile to
use telescopes there for my PhD research in May 1987; it was very
exciting (and quite easy) for me to see this “new” star in the Large
Magellanic Cloud.
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9
WHY PLUTO IS NOT

A PLANET
NEIL DEGRASSE TYSON

Here’s the story of how Pluto lost its planetary status and was
demoted to an ice ball in the outer solar system. It’s also about my
role in this at the Rose Center for Earth and Space at the American
Museum of Natural History.

In building the Rose Center, we decided to create a facility that
would do more than show pretty pictures of the cosmos—you can
get those on the internet. We created an 87-foot-diameter sphere in
a glass cube, in which the architecture and the exhibits combine to
make you feel like you’re part of the universe—that you’re walking
through the universe. Our sphere is whole. Most planetariums have
just a dome, with the planetarium sky projector housed within, and
corridors surrounding it, displaying pictures of the universe. That’s
the way most planetariums in the country are designed. Pretty
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pictures are beautiful, but we thought it was time to learn something
more about how the universe works, so instead we assembled the
deepest concepts in the cosmos and made them our exhibits.

In our collaboration with the architects, Jim Polshek and
partners, and the exhibit designer, Ralph Appelbaum and associates
(perhaps best known for the Holocaust Museum, in Washington,
DC), we proceeded. The universe loves spheres. You gain significant
doses of insight into how the universe works by recognizing that the
laws of physics conspire to make things round, from stars to planets
to atoms. And in most cases where things are not round, something
interesting is going on to prevent it, such as the object is rotating
quickly. If we begin with an architectural structure that is round, we
can put it to work as an exhibit element, allowing us to compare the
sizes of things in the universe. By taking the dome that houses the
space theater of the Hayden Planetarium in its upper half and
completing it to form a sphere, we also gained a whole new exhibit
space in the sphere’s belly. That became the Big Bang theater, where
visitors could look down and observe a simulation of the beginning
of the universe.

Around the 87-foot-diameter sphere we built a walkway where
we invite you to envision the “Scales of the Universe.” As you start
out, imagine first that the planetarium sphere is the entire
observable universe. On the railing sits a model, about 4 inches
across, showing the extent of our supercluster, containing thousands
of galaxies, including the Milky Way. You realize that the universe is
much, much bigger than our piece of it, the piece for which we have
a word, a line in an address: the Virgo Supercluster. Then you take a
few more steps, and we ask you to change scales: to imagine that
the planetarium sphere now represents the Virgo Supercluster—87
feet across. On the railing, you next see a model about 2 feet
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across, which includes the Milky Way, the Andromeda galaxy, and
some satellite galaxies—that’s our Local Group of galaxies. Next, the
planetarium sphere becomes the extent of the Local Group, and on
the railing we have a model of the Milky Way, a couple of feet
across, looking like a large fried egg—flat, with a bulge in the center.
Take a few more steps, and the Milky Way itself becomes the
planetarium sphere, where on the railing, we have a Plexiglas sphere
a couple of inches across with a hundred thousand specks in it,
representing a globular cluster of stars in the Milky Way. Continuing,
that model of a globular cluster then becomes the planetarium
sphere, and on the railing, we have a sphere about 6 inches across,
showing the entire extent of the sphere of comets that surrounds
our solar system: the Oort Cloud.

These countless comets from the Oort Cloud, raining down on
the inner solar system, are the most dangerous class of objects to
hit Earth. Each one packs extreme kinetic energy as it comes in from
the outer solar system, gaining speed as it descends toward the Sun.
The last time that comet coming in from the Oort Cloud visited the
inner solar system was probably more than 40,000 years ago, so we
don’t have any historical information for it. If one of the comets
coming in is headed for us, we don’t have much time to do anything
about it. When a normal asteroid swings around, we can typically
predict its trajectory a hundred orbits in advance. We can chart the
asteroid’s orbit, along with Earth’s orbit, and determine whether a
hundred orbits later, it will collide with us or not. That might give us
a hundred years to prepare a space mission to deflect it. But if a
comet comes in from beyond the orbit of Neptune, and it’s headed
straight for us, we will have little advance warning. 1

At a subsequent stop along the “Scales of the Universe” walkway,
the big sphere represents the Sun with models of the planets placed
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next to it, in correct size relative to the Sun as the big sphere. This
exercise continues, comparing smaller and smaller scales, until we
reach the center of the atom. When the planetarium sphere is the
hydrogen atom, we show a dot the size of its nucleus—1/130 of an
inch across, revealing that most of the atom’s volume is empty
space.

The planetarium sphere has become a potent tool to explore the
relative sizes of things in the universe.

Today, the Rose Center is a gorgeous place at night (figure 9.1).
On the left you can see the walkway where you would stand to
compare the big sphere, when representing the Sun, to the sizes of
the planets. In the picture you can spot Saturn (with its rings) and
Jupiter, next to each other, and of course, Uranus and Neptune are
there too. As for Mercury, Venus, Earth, and Mars—they are too
small to see in the picture. Their models, ranging from baseball to
grapefruit size, are displayed down on the walkway railing, not
suspended from the ceiling on cords. That’s where all the trouble
with Pluto started. We did not include a scale model of Pluto on that
railing next to Mercury, Venus, Earth, and Mars. And we had good
reasons.
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FIGURE 9.1. The Rose Center for Earth and Space at night. At night the 87-foot-
diameter sphere is bathed in blue light and can be seen inside its glass cube.
Models of Jupiter and Saturn, shown to scale, can be seen hanging near the big
sphere, which stands in for the Sun. It was the lack of a model for Pluto in this
section of the exhibit that started all the controversy. Photo credit: Alfredo
Gracombe

We became the center of a controversy that we did not start. A
reporter visited a year after we opened our exhibit, noticed that
Pluto was missing from the display of the relative sizes of planets
and decided to make a big deal of it, writing a front-page story
about it in the New York Times, and that’s when all hell broke loose.
Here’s the background of what we did and why we did it.
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The story of Pluto starts with Percival Lowell, a very tweedy
gentleman from New England. He liked astronomy, and he was
wealthy, so he built his own observatory, called, as you might
suspect, the Lowell Observatory. It is located in Arizona at an
altitude of 7,250 feet. It’s still there, on a site called “Mars Hill.”
Lowell was a Mars fanatic; he loved Mars so much and wanted so
badly for it to harbor life that he wrote three books on the subject.
It’s one thing to write books on the possibility of life on Mars, but
according to him, and him alone, he looked through his eyepiece
and actually claimed to see evidence of life on Mars. He saw
seasonally changing vegetation and canals and where the canals
crossed, he thought there were oases. As far as he was concerned,
the Martians were running out of water, because the canals he saw
connected the poles to the vegetation areas. Mars has polar ice
caps. He imagined them melting the ice and channeling the water to
all the places it was needed. Without this massive public works
project, Martian life would run out of water, dooming it to
destruction. The human mind is powerfully imaginative; that’s why
we have the scientific method to check our hypotheses. During the
close approach of Mars to Earth in 1877, Giovanni Schiaparelli had
seen lines or channels on Mars, which he called canali, a word easily
mistranslated into English as “canals.” Channels are natural
formations in a planetary landscape. Canals are made by an
intelligent civilization. The words mean two different things. But it
was too late. Lowell took up the idea, drawing an elaborate system
of canals. Eventually, when others failed to see them with their
telescopes, it was realized that they could be the result of an optical
illusion, wherein the eye connects up random features to create
lines. Modern photographs show no network of canals. The
“vegetation” areas turned out to be dark areas of basalt-type rock,
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which appeared green in contrast with Mars’ red deserts, and which
were seasonally covered and uncovered by wind-blown dust.

In addition to his interest in Mars, Percival Lowell initiated the
search for Planet X. At the turn of the century, there were eight
known planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus,
and Neptune. Turns out, Newton’s laws accounted beautifully for all
the planetary motions in the solar system except Neptune’s. Maybe
there was an unknown and undetected source of gravity out there
affecting its path—a planet yet to be discovered. Lowell was
convinced that such a planet existed, and he called it Planet X. Clyde
Tombaugh was hired to look for it: to launch a search near the
ecliptic, the plane in which the known planets orbit the Sun. He was
looking for an object that moved a little bit between one photo and
another taken of the same region of the sky days or weeks later,
indicating that the moving object was a distant planet in orbit
around the Sun. Tombaugh used an instrument called a blink
comparator—an important instrument in the history of astronomy,
although we make these comparisons by computer today. One
photograph is mounted to one side of the instrument. A second
photograph mounts to the other side, and it has a single viewer with
two lenses, which observes the two images lit in rapid sequence. As
the light flashes back and forth, the viewer’s brain fuses the two
images into one image, except for the object whose position shifts
back and forth from one image to another. Anything that moves
stands out quite readily, and it’s by that method that Clyde
Tombaugh discovered Pluto in 1930.

Pluto was named by an 11-year-old girl, Venetia Burney, who had
just been studying Roman mythology in school. Planets were named
after Roman gods, and Pluto was the god of the underworld. The
official symbol for Pluto combines a P and an L, which coincidentally
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are the initials of Percival Lowell. Almost a half century later, a moon
of Pluto was discovered. The first photographic evidence, obtained in
1978, was just a little bump on Pluto’s blob-like image on the
photograph. Years later, as angles of view to the Pluto system
became favorable, we could detect eclipses and transits by the
resulting diminutions in the light of the image when Pluto and its
moon passed in front of each other as seen from our line of sight as
they orbited. When we obtained higher-resolution images, from the
Hubble Space Telescope, were we able to get direct images of
Pluto’s moon—named Charon, after the ferryboat driver that carries
souls across the river Styx into Hades. Pluto has a moon—that’s
good. If you want to be in the planet club, that’s a good start. No
problem, we thought.

But there was a problem. First of all, when Pluto was discovered,
we thought we had found the missing Planet X perturbing Neptune.
To do this, Planet X must be massive, not insignificant compared to
Neptune or Uranus. However, the more data we got on Pluto, and
the better our measurements became, the smaller its dimensions
and mass were revealed to be. Decade by decade: estimates of
Pluto’s size got smaller and smaller. Only after Charon was
discovered could we measure Pluto’s mass accurately by its
gravitational attraction on Charon. The result? Pluto’s mass is a mere
1/500 that of Earth, tiny relative to what would be needed to
perceptibly perturb Neptune’s orbit. We could no longer appeal to
Pluto to explain Neptune. What was perturbing Neptune? Was there
yet another Planet X? So people kept looking. They kept looking,
until 1992, when a chap named Myles Standish, the twelfth direct
descendant of another Myles Standish (one of the original pilgrims),
analyzed the historical data, indicating that Neptune had a variant
orbit. The modern Myles Standish is an astrophysicist at the Jet
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Propulsion Labs in Pasadena, California. He used better estimates for
the masses of the planets Jupiter, Saturn, Uranus, and Neptune from
the Voyager flybys of the 1980s and excluded one set of suspicious
data from the U.S. Naval Observatory taken between 1895 and
1905. After doing so, he determined that the Neptune’s orbit
matched precisely with what Newton’s laws predict, without
requiring any mysterious gravity in addition to that exerted by the
previously known objects. Planet X was dead and buried overnight.

So what do we do about Pluto? Pluto is the smallest planet, by
far. There are seven moons in the solar system bigger than Pluto,
including Earth’s moon. Pluto is the only planet whose orbit crosses
the orbit of another planet, because its path is so elliptical. Pluto is
made mostly of ice—it’s 55% ice by volume. We have a word for icy
things in the solar system. They might have been called “ice balls,”
but they were named before we knew they were made of ice:
comets. People back then tended to be poetically descriptive of
cosmic objects; describing these things as “hairy objects in the sky,”
because, if you have long flowing hair, and you’re running, your hair
will naturally flow backward. They called these things “hair,” which in
Greek translates to “comet.” Comets. That’s the other word we
already have for icy bodies orbiting the Sun. Pluto has a lot of
features in common with comets. But it was alone out there. It
wasn’t zooming in close to the Sun and then swinging back out, as
most comets do. When an icy comet comes close to the Sun, the
comet outgasses vapor, producing a long tail. Pluto never gets that
close to the Sun, so it doesn’t do that. Despite its atypical features,
people were happy to keep Pluto within our definition of planet.

In the Rose Center, however, we wanted to future-proof our
exhibits as much as possible. So trend lines in planetary exploration
mattered to us greatly. Pluto is more different from Mercury, Venus,
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Earth, and Mars than any of them are from one another. Mercury,
Venus, Earth, and Mars are all small and rocky (figure 9.2.) That’s
one family.

FIGURE 9.2. Terrestrial/rocky planets to scale (with Earth’s moon for
comparison). We show Venus here without its cloud-covered atmosphere, so that
you can see its surface features as revealed by radar imaging from the Magellan
spacecraft. Photo credit: Adapted from J. Richard Gott, Robert J. Vanderbei (Sizing
Up the Universe, National Geographic, 2011)

Mercury, the planet, nearest the Sun, has a large iron core, only
a trace atmosphere, and a cratered surface. Venus is cloud covered.
In figure 9.2, we have removed the cloud cover to show the surface
features, dramatic mountain ranges, and a few craters. Venus has a
thick atmosphere of carbon dioxide (CO2), an enormous greenhouse
effect, and an intolerably high surface temperature. Mars is smaller
than Earth or Venus but larger than Mercury. It retains a thin
atmosphere of CO2 that produces very little greenhouse effect. This
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coupled with its larger distance from the Sun makes Mars
considerably colder than Earth. The atmospheric pressure on the
surface of Mars is about 1/100 that of Earth. The dark areas in the
picture are areas of darker basalt rock not covered by sand. The red
areas, making Mars the “red planet,” are sandy deserts. Mars has a
large, long rift valley that could span the United States from coast to
coast. It has an extinct volcano, Olympus Mons, that is 70,000 feet
high. Mars has two polar caps composed mostly of water ice, with a
frosting of dry ice (frozen CO2) on top. Mars is the most habitable of
the planets other than Earth.

What else is out there? We’ve got Jupiter, Saturn, Uranus, and
Neptune. They are all big and gaseous (figure 9.3). That’s another
family. Once again they have more in common with one another
than any one of them has with Pluto.

FIGURE 9.3. Gas giant planets to scale (with Earth and Sun for comparison).
Photo credit: Adapted from J. Richard Gott, Robert J. Vanderbei (Sizing Up the
Universe, National Geographic, 2011)
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Jupiter orbits beyond Mars. It is composed mostly of hydrogen
and helium. It’s outer atmosphere contains methane and ammonia
clouds. The bands on Jupiter are cloud belts, and the Great Red
Spot, which can easily be seen in the picture, is a storm that has
raged for more than 300 years. Saturn is similar to Jupiter but is
surrounded by a magnificent set of rings. These rings are composed
of icy particles that orbit the planet. Uranus and Neptune are smaller
versions. Uranus has thin rings (as does Jupiter, although our picture
doesn’t show Jupiter’s). In 1989, the Voyager 2 spacecraft found
that Neptune also had a storm, a Great Dark Spot, shown in the
picture, with winds just outside it reaching 1,500 miles per hour.
Observations 5 years later, by the Hubble Space Telescope revealed
that the Great Dark Spot had vanished.

The terrestrial planets form in the inner solar system, where,
warmed by the Sun, light elements such as hydrogen and helium are
heated to high enough temperatures that they can escape the
planet’s gravity. The gas giant planets, formed in the outer solar
system, are colder and can retain hydrogen and helium, growing
very massive. The terrestrial planets and the gas giant planets form
two families. See table 9.1 for their properties.

Pluto doesn’t fit in. Over these past decades, we’ve just been
kind to Pluto, keeping it in the family of planets, even though we
knew in our hearts that it didn’t fit anywhere. A look at textbooks
from the late 1970s (when we finally settled on Pluto’s size and
mass) and the 1980s shows Pluto was beginning to get lumped
together with the comets, the asteroids, and other solar system
“debris.” Those were the first seeds of the unraveling of Pluto’s full-
blooded planetary status.

Pluto’s orbit also has a few problems. First, as already noted, it
crosses the orbit of Neptune. That’s no kind of behavior for a planet.
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No excuse. Second, its orbit is significantly tilted relative to the plane
of all the other planets. That’s embarrassing too. It has orbital
properties that just don’t belong with the other planets. Then in
1992, in one of those blink comparison pictures, we found another
object in the outer solar system whose position shifts over time,
another icy body orbiting in the solar system beyond Neptune. Since
then, we have discovered more than a thousand of these objects.
What are their orbits like? They’re all beyond Neptune, and many
have orbital tilts and eccentricities that resemble Pluto’s orbit.
(Eccentricity measures how noncircular an elliptical orbit is.) These
newly discovered icy bodies constitute a whole new swath of real
estate in our solar system. Since they are all small, icy bodies, as
predicted by Gerard Kuiper, we call it the Kuiper Belt. Pluto’s orbit
visits the inner edge of that Kuiper Belt, as do most of these other
icy bodies. Pluto’s existence now makes sense. It has brethren. It
has a home. Pluto is a Kuiper Belt object.

Given that Pluto was the biggest known Kuiper Belt object,
doesn’t it make sense that the first object of a species you are going
to find would be the biggest and the brightest? Ceres, which was the
first asteroid discovered, is still the biggest known asteroid. The
Pluto supporters claimed at first that Pluto is so big it can’t be a
Kuiper Belt object. But it’s out there with them, it’s made of the
same stuff, and it has similar orbital properties. We look out into the
Kuiper Belt and plot the average distance from the Sun of each
object, versus eccentricity, and we find a cluster of Kuiper Belt
objects with a 3:2 periodresonance with Neptune; that’s an orbital
match in which, for every three orbits Neptune makes, the Kuiper
Belt object makes two orbits—exactly like Pluto. Kuiper Belt objects
that share this pattern are called plutinos. They are even more
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similar to Pluto within the Kuiper belt than they are to the rest of the
Kuiper Belt objects.

TABLE 9.1. PLANETS IN THE SOLAR SYSTEM

TERRESTRIAL/ROCKY
PLANETS GAS GIANTS

MERCU
RY VENUS EARTH MARS JUPIT

ER
SATUR
N

URAN
US NEPTUNE

Semi-
major axis
(AU)

0.39 0.72 1.00 1.52 5.20 9.55 19.2 30.1

Period of
orbit
(years)

0.24 0.62 1.00 1.88 11.9 29.5 84.0 165

Diameter/
DEarth

0.38 0.95 1.00 0.53 11.4 9.0 3.96 3.86

Mass/MEart

h
0.055 0.82 1.00 0.11 318 95.2 14.5 17.1

Principal
elements Fe, Si, O (Fe, Si,

O)?
Fe, Si,
O, Mg

Fe, Ni,
S, Si, O H, He H, He

H, He,
CH4

H, He, CH4

Atmospheri
c
compositio
n

Trace O,
Si, H, He

Thick
CO2  ,
N2

O2  ,N2
Thin
CO2

H2  , He H2  , He
H2  ,
He,
CH4

H2  , He,
CH4

Temperatu
re (°F)

–270 to
+800

+820
to
+860

–128 to
+134

–220 to
+95 –256 –310 –364 –368

Note: Temperatures (in degrees Fahrenheit) are at the surface for the rocky planets (giving
the full observed range), and are near the top of the atmosphere for the gas giants.

So back at the Rose Center, we simply grouped Pluto with an
exhibit on the Kuiper Belt. Didn’t even say it wasn’t a planet.
Physical properties mattered more to our design than labels.
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And so it was—for a year, until the fateful New York Times article
of January 21, 2001, titled “Pluto’s Not a Planet? Only in New York,”
written by science journalist Kenneth Chang:

As she walked past a display of planets at the Rose Center,
Pamela Curtice, of Atlanta, scrunched her brow, perplexed.
There didn’t seem to be enough planets. She started counting
on her fingers, trying to remember the mnemonic her son
had learned in school years ago. My Very Educated Mother
Just Served Us Nine Pizzas. Mercury, Venus, Earth, Mars,
Jupiter, Saturn, Uranus, Neptune. “I had to go through the
whole thing to figure out which one was missing,” she said.
Pluto. Pluto was not there. “Now I know my mother just
served us nine,” Mrs. Curtice said. “Nine nothings.” Quietly,
and apparently uniquely among major scientific institutions,
the American Museum of Natural History cast Pluto out of the
pantheon of planets. . . . “We are not that confrontational
about it,” said Dr. Neil deGrasse Tyson, director of the
museum’s Hayden Planetarium. “You actually have to pay
attention to make note of this.”

I was trying to be diplomatic. We didn’t say, “there are only eight
planets,” or “we kicked Pluto out of the solar system,” or “Pluto is not
big enough to make it in New York.” No. We simply organized the
information differently—that’s all we did. And the New York Times
was making a federal case out of it.

The article continued: “Still, the move is surprising, because the
museum appears to have unilaterally demoted Pluto, reassigning it
as one of more than 300 icy bodies orbiting beyond Neptune, in a
region called the Kuiper Belt (pronounced KY-per).”
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Pluto orbits with these other similar icy bodies. That’s where it
lives. We learned this in the 1990s as many new icy bodies like Pluto
were discovered, giving us new information and further insight into
how the solar system is constructed.

The article quotes a colleague of mine, Dr. Richard Binzel, a
professor at the Massachusetts Institute of Technology—we were in
graduate school together—and he was upset, because he had
devoted part of his career to studying Pluto. Binzel said in the
article: “They went too far in demoting Pluto, way beyond what the
mainstream astronomers think.” Then the head of the planetary
division of the American Astronomical Society, Dr. Mark Sykes, called
the New York Times and said he was going to be in New York and
planned to debate me, and invited them to come. They agreed. So
they sent another reporter and another photographer to capture and
record a private debate that Stykes and I had in my office, and it’s
quoted verbatim in the February 13, 2001, article that ensued.
Meanwhile, with the photographer following along, we went on the
scaling walk near the suspended gas giant planets, and Dr. Sykes
reached over to me, playfully grabbing my neck. The picture caption
said: “Dr. Mark Sykes challenges Dr. Tyson to explain the treatment
of Pluto in the planet display in the Hayden Planetarium.”

It hit the internet, wired news, boston.com. “Center puts Pluto’s
planetary status in doubt.” It was all the buzz. And I spent three
months of my life just fielding media inquiries, getting nothing else
done. Let’s look at some of the comments from a chat room online.

“Pluto is a true-blue American planet, discovered by an
American.” This was from a NASA scientist. Someone else in the chat
room said, “Such romanticism has no place in science, a system
which must never cease trying to determine the objective truth.
Neither does nationalism.” Here is another one on our side: “I
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confess I am disappointed in the learned community that joins with
astrologers in holding onto an outdated classification scheme.” You
want to get an astronomer angry, call him an astrologer. Those are
fighting words.

This next person couldn’t commit: “My personal view is that Pluto
should probably have dual citizenship.” This was from the president
of the International Astronomical Union’s planet-naming commission
—he didn’t want to upset anybody. Want more? “I do not agree with
the dual status because it complicates matters too much in the
public perception.” That was none other than David Levy. Patron
saint of comet hunters. More than 20 comets he discovered are
named after him. Even the famous comet that hit Jupiter in 1994
was co-discovered by him, comet Shoemaker–Levy 9. David Levy
was worried that if we did something that confused the public, that
would be bad. My thoughts were that there’s a lot of our research
that is confusing, but we shouldn’t reshape our science just to avoid
confusing the public. Another person said: “First, it’s amazing that
Tyson, an astrophysicist, would even venture into such waters. I
feel, as a planetary geologist, equally qualified to demote the
Magellanic Clouds from its current status, as a satellite galaxy of the
Milky Way, to just a star cluster . . . so in that spirit, I think he’s full
of baloney.” This was someone else from NASA.

Here’s another comment: “It’s not too hard to imagine the same
type of people back in Galileo’s age, saying, ‘I’ve been taught that
the Earth is the center of the universe since I was a child. Why
change it? I like things the way they are.’”

As a scientist, you must embrace the inconstancy of knowledge.
You learn to love the questions themselves. Charon, Pluto’s moon, is
over half the diameter of Pluto. You can easily argue that Pluto is not
a planet with a moon, but more like a double planet. In fact, their
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center of mass is not even within Pluto, but falls in the space
between them. Just to be clear, in contrast, the center of mass
between Earth and the Moon lies within Earth, about a thousand
miles beneath Earth’s crust. It’s not that we are stationary and the
Moon goes around us. We both go around our mutual center of
mass; Earth simply jiggles a little, whereas the Moon circles it in a
wide orbit. Pluto is massive enough to be round. Charon is also big
enough to be round. If you counted Pluto as a planet, Charon would
qualify also, as would many other small, but large-enough-to-be-
round objects.

Walt Disney’s cartoon dog, Pluto, was first sketched in 1930, the
same year that Clyde Tombaugh discovered the cosmic object. They
have the same age in the American psyche. Disney is a major force
in our culture, so I believe that had we demoted Mercury, no one
would have cared. But we demoted Pluto. Who is Pluto? Pluto is
Mickey Mouse’s dog. That’s important stuff to us in America. That’s
our culture. By the way, why is Pluto Mickey’s dog, but Mickey is not
Pluto’s mouse? Ever thought about that? I would come to learn of
the Disney pantheon that if you wear clothes, you can own other
animals who do not. Goofy is a dog but he wears clothes and can
talk, so he is not anyone’s pet. Mickey Mouse wears pants. Pluto is
naked, except for his collar, doesn’t usually talk, and therefore can
be owned by a mouse. It’s a Disney world.

Let me complete the arguments. I own lots of books, some of
which go back for centuries, tracking the evolution of our thought
concerning our place in the cosmos. One is from 1802. Know what
happened in 1801? Reflecting on the big gap between the orbit of
Mars and Jupiter in our solar system, people felt there ought to be a
planet out there. That gap is too big not to have a planet. After
some effort, Italian astronomer Giuseppe Piazzi, in 1801, found a
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planet in that gap. They named it Ceres, after the Roman goddess of
the harvest. Indeed, the word cereal derives from Ceres. Everyone
was excited, because a new planet had been discovered. Have you
heard of that planet? No. One book from that time has the orbits of
the planets in it: Mercury, Venus, Earth, Mars, Ceres, Jupiter, Saturn,
and planet Herschel (not yet renamed Uranus). Ceres is on the list.

In 1781, when William Herschel discovered what later became
known as Uranus, it was a puzzle as to what to name it, because no
one since ancient times had ever discovered a new planet. (In his
book on Herschel, Michael Lemonick has argued that Copernicus
could also be credited with discovering a new planet—Earth—for he
showed that Earth was indeed a planet.) Being a good English
subject, Herschel sought to name his new planet after King George
III. So he called it Georgium Sidus (George’s star). That’s the same
King George to whom the U.S. Declaration of Independence is
addressed. King George honored Herschel by giving him a stipend of
₤200 a year if he would give stargazing parties with his telescopes
for the king’s guests at Windsor Palace. Then the list of planets
would have read Mercury, Venus, Earth, Mars, Jupiter, Saturn, and
George.

Fortunately, clearer heads prevailed, and they looked for a
suitable Roman god to replace George as the planet’s name. Johann
Bode suggested “Uranus,” after Ouranos, the Greek god of the sky,
and that name stuck. Martin Klaproth, a German chemist, was so
excited by this he named his newly discovered element “uranium”
after the new planet. By the usual scheme, planets are named after
Roman gods, whereas satellites are named after Greek characters in
the life of the Greek counterpart of that Roman god. Take Jupiter—
its biggest moons are Io, Europa, Ganymede, and Callisto. In Greek
legend they are characters in the life of Zeus, the Greek counterpart
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to Jupiter. By this scheme, the names pay homage to both Roman
and Greek mythology. For Uranus, however, to mollify the Brits, after
dissing the king, we broke tradition and named all the moons of
Uranus for fictional characters in English literature. Nearly all of them
come from Shakespeare. One of them, Miranda, I chose for the
name of my daughter, except at the time I knew of the name only
from the moons of Uranus. When I told my wife, “I like this name
‘Miranda,’” she said, “Oh, you mean the heroine in Shakespeare’s
The Tempest.” I said, “Ah, yeahh . . . that’s what I was thinking too.”

Back to this planet Ceres. Let’s go to another book—30 years
later. The Elements in the Theory of Astronomy—an advanced
textbook. Math intensive. Now it lists ten known planets, Mercury,
Venus, Mars, Vesta, Juno, Ceres, Pallas, Jupiter, Saturn, and Uranus,
which are denoted by their symbols (♀ for Venus, ⊕ for Earth, ♂ for
Mars, etc.). Neptune wasn’t discovered yet. Four new planets had
cropped up, all needing their own new symbols, making a total of
ten planets. What’s the problem? The word “planet” was not formally
defined. The last time the word had an unambiguous definition was
in ancient Greece—“planet” is Greek for “wanderer.” You look up at
the night sky, and if an object moves against the background of
stars, it is a planet. What do we see moving against the background
sky of stars? Mercury, Venus, Mars, Jupiter, Saturn—and two more—
the Moon and the Sun. The seven planets of the universe. That is an
unambiguous definition. But Copernicus put the Sun in the middle
and described Earth as going around the Sun—is the Sun still a
planet? What about Earth? Is Earth a planet? Planets then became
things that went around the Sun. Comets also go around the Sun
but were fuzzy and had tails (“hair”), so we didn’t call them planets.
But that decision was arbitrary. When we found these new non-
comet-like objects between Mars and Jupiter—Vesta, Juno, Ceres,



197

and Pallas—we called them planets too. A few years later, we had
found 70 more of these things. And you know what we found? They
had more in common with one another than any one of them had
with anything else in the solar system, and they were all orbiting in
the same belt. We hadn’t discovered new planets. We had
discovered a new swath of real estate in the solar system occupied
by a new species of objects. Today we call them asteroids, a name
invented by William Herschel. He found that they were tiny relative
to the established planets and argued that they constituted a new
class of objects. Things that started out being called “planet” were
later reclassified with a new name, and more importantly, we
learned something new about the structure of the solar system. Our
knowledge base broadened, and our understanding advanced. That
all happened about 10 years after The Elements in the Theory of
Astronomy was published. Plus, I bet they ran out of ways to make
new symbols.

Pluto is about 1/5 of the diameter of Earth—it’s small, like the
other Kuiper Belt objects (figure 9.4.) We show to scale (in
comparison with Earth) the rest of the objects in the solar system
(other than the Sun and planets) which are larger than 254 km in
diameter. Earth’s moon is shown, as well as the large moons of other
planets. The four largest moons of Jupiter (discovered by Galileo
when he first turned his telescope to the sky) are shown. Ganymede,
Jupiter’s largest moon, is slightly larger than the planet Mercury, but
less than half as massive. Io and Europa are jostled by the other
moons gravitationally and are heated by kneading due to Jupiter’s
tides. Io is covered with active volcanoes. Europa has an 80 km deep
water ocean beneath a 10 km deep crust of ice. There is more water
in the oceans of Europa than in all the oceans of Earth. Saturn’s
small moon Enceladus, for similar reasons, has a southern ocean
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below an icecap, and spectacular water geysers. Saturn’s largest
moon, Titan, has methane lakes and a mostly nitrogen atmosphere.
It rains methane on Titan, and there are frozen methane riverbeds.
The dark features are frozen methane-ethane regions, while the
white areas are frozen water ice. Neptune’s large icy moon Triton
has spectacular geysers (perhaps gushing nitrogen). Triton orbits
Neptune in a backward direction and may be a captured Kuiper belt
object. The largest asteroids and the largest Kuiper Belt objects
known as of 2010 are also shown in the figure. Ceres, the largest
asteroid, was the first discovered. Vesta is next largest; it is rich in
iron and may have had its surface blasted off by an ancient collision
with another asteroid. The asteroids are all rocky bodies. The Kuiper
belt objects are icy bodies. Pluto and Charon are shown as they
were thought to appear in 2010, deduced from mapping their
brightness fluctuations as they eclipsed each other. Eris is shown
slightly bigger than Pluto, as thought at the time, but improved
measurements in 2015 have since shown Eris (diameter: 2,326 ± 12
km) to be slightly smaller than Pluto (diameter: 2374 ± 8 km). The
Kuiper belt objects are all smaller than our moon.

I’ve been giving you some of the background on the science of
Pluto, but now let’s get back to the story. What happened next?
Letters from the public came pouring in. “If Pluto remains a planet, it
will cost the museum money to build a model of it. People may
complain that they have to buy new posters, but who cares? It will
cost them three dollars.” That was from a seventh grader. “What’s
wrong with Pluto? Is it because it is different? Is that why you don’t
consider it a planet? If you do, then that is racism.” Racism?

Here’s another theme. “Now the teachers are going to have to
teach them that there are eight planets when last year’s teacher
taught them that there were nine. Students, young students are
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going to get confused, and I always remember my planets by saying
My Very Educated Mother Just Served Us Nine Pizzas. That has
always helped me and a lot of kids remember the planets. Now what
are they going to teach them? And even though I am a kid I still
know what’s happening.”

In the Rose Center, we don’t count planets. Exam questions,
such as “What’s the fourth planet from the Sun?” There’s no science
in that. In the Rose Center, we didn’t say Pluto is not a planet; we
don’t even emphasize the word “planet.” What we say is, the solar
system has families, and one of those families—the terrestrial
planets (Mercury, Venus, Earth, Mars)—has properties in common
that distinguish their members. The Asteroid Belt is another family—
small rocky bodies. The gas giants make a family. The Kuiper Belt
objects, including Pluto orbiting near their inner edge, all have
similar properties. They constitute yet another family. Then we have
a cloud of icy bodies that completely surrounds the Sun, the Oort
Cloud of comets. We have divided objects orbiting the Sun into five
families. That’s our pedagogical paradigm. What matters is asking
what properties objects have in common. A third grader can learn
that the gas giants are big and low in density—it’s an excuse to learn
the word “density.” These are big and gaseous, like beach balls.
Saturn has lower density than water. If you took a piece of Saturn
and put it in your bathtub, it would float. I always wanted a Saturn
toy rather than a rubber ducky when I was growing up—I thought
that would be so cool.
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FIGURE 9.4. Solar system objects (other than the Sun and planets) larger than
254 km in diameter shown to scale (with Earth for comparison). Photo credit:
Adapted from J. Richard Gott, Robert J. Vanderbei (Sizing Up the Universe,
National Geographic, 2011)

Pluto, I think, is happier now, in the Kuiper belt where it belongs.
To consider it a red-blooded planet overlooks its fundamental
properties. If you were to move Pluto to where Earth is now, it
would grow a tail just like a comet, and that is certainly no kind of
behavior for a planet.

Before we make Pluto feel bad for its diminutive size, I offer you
a humbling thought: Jupiter is bigger compared to Earth than Earth
is compared to Pluto. (Compare figure 9.3 and figure 9.4.) Which
means that if you polled people (or whatever kind of creatures)
living on Jupiter—you went to some Jovians and asked, “How many
planets are there in the solar system?”—what answer would they
give you? Four. You’d say: “Oh, what about all those other planets?
Earth, . . . .” The Jovians would say: “Those chunks of rock? That
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debris? Those vagabonds of the solar system?” So, my argument,
our argument, for removing Pluto is not specifically a size-based
argument. It’s more an argument of physical and orbital properties.

In 2005. Mike Brown and his team at Caltech (the California
Institute of Technology) discovered a Kuiper Belt object, named Eris,
which was nearly identical in diameter to Pluto and 27% more
massive (see Fig. 9.4). Eris has a small moon, Dysnomia, whose
orbital parameters allow us to accurately estimate Eris’s mass, and it
is clearly more massive than Pluto. This brought the argument to a
head. If Pluto was a planet, then surely Eris must be also. Either you
had to demote Pluto or promote Eris. The International Astronomical
Union (IAU), the official body for deciding such definitions, held a
special session in a 2006 meeting to vote on Pluto’s planetary status,
as well as that of Eris and the other Kuiper Belt objects. The result?
Pluto was demoted to dwarf planet from its previous planetary
status. The story made news around the world. Textbook writers
took note. To be a planet an object had to (1) orbit the Sun, (2) be
massive enough for gravity to have made it assume a hydrostatic
equilibrium (nearly round) shape, and (3) have cleared the
neighborhood around its orbit of debris. Pluto failed the third
criterion, as did Ceres—they are accompanied by other objects
whose total mass is comparable with their own. Most astronomers,
including Mike Brown, interpret “cleared the neighborhood” to mean
that the planet must now dominate the mass in the neighborhood of
its orbit. Jupiter, after all, is accompanied by more than 5,000 Trojan
asteroids, clustered around stable Lagrange points either 60° ahead
or 60° behind Jupiter in its orbit, but these asteroids in total are
miniscule in mass in comparison with Jupiter itself. The IAU was not
demoting Jupiter. The IAU affirmed that there are eight planets in
the solar system: Mercury, Venus, Earth, Mars, Jupiter, Saturn,
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Uranus, and Neptune. My Very Excellent Mother Just Served Us
Nachos. Pluto, Eris, and Ceres, meeting the first two criteria, were
minor planets that could use the name “dwarf planet.” The Rose
Center was thus 6 years ahead of its time in demoting Pluto. I wrote
a book, The Pluto Files: The Rise and Fall of America’s Favorite
Planet (2009), chronicling my experiences. Mike Brown has written a
charming book on his discovery of Eris, titled How I Killed Pluto and
Why It Had It Coming (2010). We have now discovered four smaller
moons orbiting Pluto, in addition to Charon. Eris has one moon, and
the Kuiper Belt object Haumea (now also designated by the IAU as a
dwarf planet) has two. In 2006, NASA launched the New Horizons
spacecraft toward Pluto. Some of Clyde Tombaugh’s ashes are
aboard. The spacecraft flew by Pluto and Charon in 2015, snapping
the beautiful picture of them both shown in figure 9.5. A heart-
shaped icy region is visible on Pluto, which has been tentatively
named “Tombaugh Regio,” and the pole of Charon has a dark area
which has been unofficially named “Mordor” after the shadow lands
in the Lord of the Rings. So all is well with Pluto.
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FIGURE 9.5. Pluto and Charon taken by the New Horizons spacecraft during its
2015 flyby. Photo credit: NASA
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10
THE SEARCH FOR LIFE

IN THE GALAXY
NEIL DEGRASSE TYSON

Because we are alive, we harbor a special interest in life in the
universe. If we are to look around the universe and wonder whether
some particular star has planets orbiting it, and whether those
planets could have life, it’s sensible to shape questions based on life
as we know it—life on Earth. Living things all seem to have a set of
properties in common. First, life as we know it requires liquid water.
Second, life consumes energy. In chemical terms, we have a
metabolism. And the fun part, number three, life has a way to
reproduce itself. I’ll focus on the first one, because that one has a
chance of getting addressed by the methods and tools of
astrophysics. All we need to do is to explore the universe in search
of liquid water.
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Ever since the story of Goldilocks, we’ve known (and agreed)
that things can be too hot, too cold, or just right, where life is
concerned. Take the Sun. We know it has a certain luminosity; the
closer to the Sun you are, the hotter things get, and the farther
away you are, the cooler things get. If life requires liquid water, and
you take water and move too close to the Sun, the water
evaporates. Too far away? It freezes. This leads us to conclude that
an orbital swath exists—a zone exists—where a planet can sustain
liquid water. Closer to the Sun we have steam, farther away we have
ice, and in between we can have liquid water. People have a name
for this, the habitable zone. This concept has pretty much dominated
our paradigm for more than a half century, beginning in the 1960s,
when it originated. Different stars, depending on their luminosities,
have habitable zones of different sizes, which gave us something to
think about. The astrophysicist Frank Drake took this concept a little
further and constructed what we now know as the Drake equation.
It is not so much an equation the way Newton’s laws give us
equations, but rather a way to organize our ignorance about the
prevalence of intelligent life in the universe.

Before I show you the Drake equation, let’s just say that, based
on everything we know about life, we think life needs a planet. It’s
going to need a planet orbiting a star. You have to make the star,
and then the planet, and then, remembering that life on Earth
evolves slowly, you need billions of years of evolution to produce
intelligent life. Therefore, the star has to be long lived. Not all stars
live a long time. Some stars don’t live as long as a billion years, or
even as long as a hundred million years. Your most massive stars are
dead after 10 million years or less—not much hope for intelligent life
on a planet around those stars, if what happened on Earth is any
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indication. We need a star that is long lived and a planet, but not
just any planet—a planet in the star’s habitable zone.

So far, we know to look for a long-lived star, a planet in its
habitable zone, and one having life, but not just any life—intelligent
life. For most of Earth’s history, potent microbes called
“cyanobacteria,” wreaked havoc on Earth’s atmosphere. People today
complain that humans are polluting the environment, creating the
ozone holes, and adding greenhouse gases like CO2. But our
influence pales compared with the effect of cyanobacteria on Earth’s
atmosphere 3 billion years ago. Back then, Earth had a lot of carbon
dioxide in its atmosphere, and it was happy. Then the cyanobacteria
came along, ate the CO2, and churned out oxygen, completely
switching the chemical composition and balance of the atmosphere.
Earth was left with an oxygen-rich atmosphere, and very little CO2.
Oxygen was actually toxic to many of the anaerobic organisms at the
time. Carbon dioxide is a greenhouse gas, so with less of it, the
greenhouse effect decreased, and Earth started to cool dramatically.
If there had been an environmental movement back then, it might
have protested, “Stop the oxygen production! This is bad for
Earth”—because it was a change. Earth got colder and froze over
completely several times. Meanwhile, the Sun was slowly but
steadily getting more luminous as it evolved over billions of years,
and the snowball Earth episodes ended. Ultimately, the oxygen in
the atmosphere allowed diverse animal life to emerge, including
humans. Not all changes are bad for all organisms.

We worry that the next asteroid is going to take us out. I’m
telling you. It’s going to happen. I don’t know when, but it’s going to
happen, and it will be a bad day on Earth. Consider the last time
when Earth got hit in a big way, 65 million years ago, when an
asteroid took out the dinosaurs. There were our rodent-sized
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mammal ancestors, scurrying in the underbrush, just barely
surviving, basically serving as hors d’oeuvres for T. rex and other
scary predators. T. rex gets knocked out in the aftermath of the
asteroid strike, enabling mammals to evolve into something more
ambitious. These events set in motion a series of events that
ultimately fostered the culture and society we now have, giving us
life while simultaneously taking it away from the ferocious dinosaurs.
So, I tend to take a more holistic view of change on Earth.

The implication of this story is that if you want converse with
beings on a planet that might have life, it is not good enough for it
to just have life. That life has got to be intelligent. Actually, you need
more than that. Isaac Newton was intelligent, but you couldn’t have
a conversation with him across the galaxy. What he lacked in his day
was some kind of technology enabling him to send signals across
vast distances of space. The intelligent life we are looking for has to
be technologically proficient at the epoch when we observe it. In
other words, if it is 1,000 light-years away, it must have been
transmitting signals across space exactly 1,000 years ago, for that
signal to reach us just now. Now imagine that technology contains
the seeds for its own undoing. Suppose technology in the hands of
ignorant and irresponsible people enables you to destroy yourself
more efficiently than any natural catastrophe. How long is that
period before your blundering power causes your own extinction?
That might be only a hundred years. Then, if you are looking around
the galaxy, you must be lucky enough to see another planet during a
hundred-year slice out of the 5-billion-year history of that planet in
orbit around its star, which makes the probability of finding a cosmic
pen-pal look really slender.

Frank Drake took all these arguments and wrote them into the
Drake equation. This formed a starting point for the Search for
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Extraterrestrial Intelligence, known as SETI. He wanted to estimate
the number of communicating civilizations in the galaxy we could be
hearing from now: Nc. To get there, he introduced a series of
fractions into one equation, with each term representing a discrete
estimate based on modern astrophysics:

Nc = Ns × fHP × fL × fi × fc × (Lc /age of the galaxy),

where

Nc = number of communicating civilizations we could observe
in the galaxy today;

Ns = number of stars in the galaxy, ~300 billion;
fHP = fraction of stars suitable with a planet in the habitable

zone, ~0.006;
fL = fraction of these planets where life develops, unknown,

but perhaps near 1;
fi = fraction with life that develop intelligent life, unknown,

but probably small;
fc = fraction with intelligent life that develop technology to

communicate over interstellar distances, unknown, but
perhaps near 1;

Lc = average lifetime of communicating civilizations,
unknown, but maybe small compared to the age of the
galaxy; and

age of the galaxy, ~10 billion years.

Let’s start out with the number of stars in the Milky Way, about
300 billion. Because not every star in the galaxy would be suitable,
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you have to multiply by the fraction of stars that are long lived (long
enough to develop intelligent life) and that also have a planet in the
habitable zone (fHP). That reduces the total number available to us,
where we might look for intelligent life. As of the date of this
publication, after heroic efforts surveying more than 150,000 stars,
we have confirmed the existence of over 3,000 exoplanets. This has
been quite a revolution.

Stars with planets turn out to be common, and many stars have
multiple planets. Among stars with planets, we want to discover
those with a happy planet in the habitable zone. We can find
exoplanets by the gravitational tug they exert on their stars, which
causes a wobble in the radial velocity of the star that we can
observe. Planets closer in exert more of a tug, causing a larger radial
velocity wobble of the star, which is easier to detect. It is thus
relatively easy to find planets close to their stars, but such planets
will be too hot to have liquid water—not ones we want for the Drake
equation. The largest survey of exoplanets has been conducted by
NASA’s Kepler satellite (named, of course, after Johannes Kepler)
which finds planets by measuring the small drop in the light of the
star that occurs when the planet passes directly in front of the star
in your line of sight. More generally we call this a transit. Jupiter has
a radius about 10% that of the Sun. Its cross-sectional area (πr2) is
1% that of the Sun. So when a Jupiter-sized planet transits in front
of its solar type star, it causes a temporary 1% drop in the light of
the star. An Earth-sized planet, whose radius is 1% that of the Sun,
will cause only a 0.01% drop in the light of a solar-type star. The
Kepler satellite was designed to be sensitive enough in principle to
detect such a diminution in the light of a star, since its main mission
was to search for Earthlike planets, but that is close to its limits.
Many Kepler detections are Jupiter or Neptune-sized planets (not
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suitable for life as we know it) but we also find many smaller planets
down to sizes comparable with Earth. Figure 10.1 shows confirmed
Kepler planets as dots: the vertical coordinate of a dot is the radius
of the planet in terms of Earth’s radius, and the horizontal coordinate
is the radius of the planet’s orbit in AU. Most of the Kepler planets
orbit solar-type stars. The blue cross-hairs show where Earth would
appear on this diagram. We are looking for exoplanets near this
location in the diagram.
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FIGURE 10.1. Exoplanets with measured planetary radii and distances from their
star found by the Kepler satellite, as of February, 2016. More than 1,100 confirmed
exoplanets are shown as dots, whose vertical position indicates their radius (in
Earth radii), and whose horizontal position indicates the distance from their star
(in Astronomical Units, AU). These exoplanets are discovered when they transit in
front of their star, slightly diminishing its light. The blue crosshairs show the
position Earth would occupy on this graph. Credit: Michael A. Strauss, NASA
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Transits are more likely to occur when the planet is close to its
star. Thus, most of the Kepler planets discovered so far are too hot
to support life. If the planet is far enough away to have a habitable
temperature, then its orbit has to line up just right for us to see it
transit, and because its orbital period is longer, it makes fewer
transits, which lowers our chance of finding it. So far, the Kepler
satellite has found only about ten confirmed exoplanets between 1
and 2 Earth diameters that are illuminated by an amount of radiation
from its star within a factor of 4 of what Earth receives from the
Sun. This number is low simply because these planets are harder to
find using the transit technique.

One such promising candidate is the planet Kepler 62e (see
figure 10.2 for an artist’s conception). It is one of five planets
orbiting a K star (named Kepler 62), located about 1,200 light-years
from us. The star’s surface temperature is 4,900 K. Planet Kepler 62e
has a radius 1.61 times as large as Earth and receives only 20%
more radiation per square meter from its star than Earth does from
the Sun. It should be in the habitable zone. It may be either a rocky
planet, or an icy planet with an ocean covering its surface. This
multiplanet system is roughly 2.5 billion years older than our solar
system.

What fraction of stars (fHP) have a suitable planet in the habitable
zone? G stars like the Sun make up nearly 8% of the stars in the
Milky Way. We know they’re okay for life, because the Sun is one of
them. Stars much more luminous than the Sun exhaust their fuel too
quickly to give their planets the time needed to evolve complex,
intelligent life, something that required billions of years on Earth.
Dimmer K stars and M stars are even longer lived than the Sun, so
they fulfill this requirement nicely.
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But main sequence M stars have such low luminosity that, to be
in the habitable zone, the planet would have to huddle so close to
the M star to keep warm that it would be tidally locked, with one
face always pointing toward the star. Tidal forces are stronger close
in. These tides force the planet into a slightly ellipsoidal shape, and
its rotation is slowed till the ellipsoidal shape is locked, pointing in
the direction of the parent star. (Our Moon is tidally locked in this
way, with one face always pointing toward Earth, because of just
this effect.) The planet probably doesn’t care about this, but any life
on its surface would: the side of the planet constantly facing the M
star would be too hot, while the other side would be too cold. An
Earthlike atmosphere would freeze out on the cold side. Meanwhile
the atmosphere from the hot side would expand to the cold side and
freeze out too, in a runaway process. Eventually all of the
atmosphere would end up frozen out on the cold side, ending
chances for life. The only hope for life on the planet is to have a very
thick atmosphere that circulates the air, reducing the extreme
temperature variation from one side to the other. Such an
atmosphere would have a very high pressure at its surface. Also, M
stars have many more giant flares than do stars like the Sun, which
could prove fatal to life. These things may not make life impossible,
but they do make it more difficult for life to evolve.
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FIGURE 10.2. Kepler 62e compared with Earth. Kepler 62e is on the right, and
Earth is on the left. Kepler 62e is an artist’s conception, but its relative size is
correct. Its orbit appears to place it in the habitable zone, and thus it could have
water oceans. Photo credit: PHL@UPRArecibo

For these reasons, G and K stars are the best candidates, and
they make up a respectable 20% of all the stars in the Milky Way.

Given such a star, what is the chance of finding a planet in its
habitable zone?

I’m now going to show you one of the most beautiful calculations
in the cosmos, but perhaps you should judge that for yourself. I just
want to show you how empowered you are with all the tools
necessary for this calculation. The Sun has a luminosity. Earth has a
luminosity too; we have a temperature, and due to that

mailto:PHL@UPRArecibo
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temperature, Earth emits radiation, primarily in the infrared part of
the spectrum—what is typically called thermal radiation. Since Earth
has a temperature, it will radiate across the spectrum with a Planck
curve corresponding to that temperature. The total luminosity of
Earth is going to be the energy emitted per unit area times Earth’s
surface area. Let’s take Earth’s surface area first, 4πrE

2, and multiply
it by the energy emitted per unit area for Earth, which is σTE

4

(according to the Stefan–Boltzmann law for thermal radiation).
Earth’s luminosity is therefore LE = 4πrE

2σTE
4. We can do the same

for the Sun: LS = 4πrS
2σTS

4. We now ask how much of that
luminosity from the Sun is actually reaching Earth. Although Earth’s
temperature varies, it varies around a very steady average. In
equilibrium, the energy that Earth receives from the Sun should be
in balance with the energy emitted from Earth’s surface. This must
be true, otherwise Earth would rapidly get either hotter or colder
with time, instead of maintaining the average that we observe.
We’ve seen these equations before, but now I’ve got a new goal for
them—to calculate the equilibrium temperature for Earth.

The solar luminosity, LS, is not all hitting Earth. Rather than the
total amount of energy emanating from the Sun in every direction,
we care only about the energy that is going to hit Earth. All this
energy from the Sun ultimately crosses through a spherical surface
equal in radius to Earth’s orbit (1 AU). We need to find out what
fraction of this entire spherical surface Earth blocks. The part that
matters for Earth—the part intercepted by Earth—equals Earth’s
cross-section.

The fraction of the Sun’s radiation hitting Earth is, therefore, the
area of that circular cross-section of Earth, πrE

2, divided by the area
of the big sphere of radius 1 AU through which all the Sun’s radiation
passes: 4π(1 AU)2. That fraction is πrE

2/4π(1 AU)2. The total solar
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luminosity hitting Earth is therefore LSπrE
2/4π(1 AU)2 or, after

substituting, using our formula for the luminosity of the Sun,
4πrS

2σTS
4 πrE

2/4π(1 AU)2. If we are in equilibrium, I am allowed to
set this equal to the luminosity Earth is giving off, 4πrE

2σTE
4. Let’s

set them equal to one another: 4πrS
2σTS

4 πrE
2/4π(1 AU)2 =

4πrE
2σTE

4. On the left side, there is a 4π/4π, which cancels out. The
πrE

2 appearing on both sides of the equation also cancels out, and
finally, the σ on both sides of the equation cancels out, which
reduces to: rS

2TS
4/(1 AU)2 = 4TE

4.
We can now calculate Earth’s equilibrium temperature, TE . First,

I’ll write the equation as: TE
4 = rS

2TS
4/4(1 AU)2. To make this look

prettier, I’m going to take the fourth root of both sides of the
equation, which gives us

TEarth = TSun √[rSun/ (2 AU)].

That’s the simplest form this equation takes. But it’s just what we
need, an equation for the temperature of Earth. Let’s substitute in
the equation: the radius of the Sun is 696,000 km, and 2 AU =
300,000,000 km. Take the radius of the Sun, 696,000 km, and divide
it by 300,000,000. What’s the answer? 0.00232. What’s the square
root of that? 0.048. What’s the surface temperature of the Sun?
5,778 K. Multiply by 0.048, and what do you get? The equilibrium
temperature of Earth is 278 K. We know 273 K is 0° C, the freezing
point of water. Therefore, our estimate for the temperature of Earth
is 5° C, or 41° F. The average temperature of Earth is actually near
that. But wait a minute, there’s something I didn’t include. I’ve been
treating Earth as if it were a blackbody, but Earth doesn’t absorb all
the energy it receives—it has white clouds, it also has reflective
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snowy ice caps. In fact, Earth reflects back into space 40% of the
Sun’s energy that strikes it. That much never even gets absorbed,
and never feeds Earth’s temperature. If you put that factor into this
equation, Earth’s equilibrium temperature drops. And if you do the
math, Earth’s equilibrium temperature drops to below freezing. Yes,
you read that correctly—Earth’s natural equilibrium temperature in
space at our distance from the Sun is below the freezing point of
water. According to our earlier argument, there should be no life and
no liquid water on Earth. But of course we have liquid water. And
we’re teeming with life. So something else is raising the
temperature. You guessed it: the greenhouse effect. The infrared
radiation radiated by Earth’s surface does not escape directly into
space, it is absorbed by the atmosphere, which heats the
atmosphere, as we discussed in chapter 2. The trapping of the
infrared radiation then raises the surface temperature of Earth. The
greenhouse effect caused by Earth’s atmosphere thus raises Earth’s
surface temperature. Turns out that the greenhouse effect on Earth
approximately compensates for the reflectivity of Earth, so our
calculation is fine after all.

From our wonderful equation, TE = TS √[rS/(2 AU)], it is clear
that for a given star, the temperature of a given planet (with a
particular reflectivity and greenhouse effect) would be proportional
to one over the square root of its distance from its star. This
equation allows us to calculate the inner and outer edges of the
habitable zone for that particular planet; call these limits rmin and
rmax. At the inner edge of the planet’s habitable zone, at a distance
rmin from the star, water is just about to boil on its surface. If it has
an atmospheric pressure like Earth, water boils at 100° C or 373 K.
At rmin, the inner edge of the habitable zone, the planet has a
surface temperature of 373 K. Water freezes at 0° C or 273 K: that
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occurs at the outer edge of its habitable zone. Thus a planet at the
inner edge of its habitable zone is hotter than the same planet at the
outer edge of its habitable zone by a factor of 373/273. The ratio of
rmax/rmin will be the square of (373/273), or 1.87. So the outer edge
of the habitable zone for this particular planet is only 87% larger
than the inner edge. That’s a narrow range.

After adjustment for observational selection effects, the Kepler
data tell us that around 10% of solar-type (G and K) stars have an
Earth-sized planet (with a radius between 1 and 2 times that of
Earth) with a stellar radiation flux between 1/4 and 4 times what
Earth receives. Thus, around 10% of stars similar to the Sun would
have Earth-sized planets within 0.5 AU to 2 AU of the star. That’s
because solar radiation falls off like the square of the distance. A
planet at 2 AU receives 1/4 of the solar illumination we get, and a
planet at 0.5 AU receives 4 times the solar illumination we receive.
The Kepler data suggest that the separations of Earth-sized planets
from their host stars are distributed uniformly with the logarithm of
the separation. What does this mean? Of the planets between
0.5 AU and 2 AU, we expect half to be between 0.5 AU and 1 AU,
and the other half between 1 AU and 2 AU. The span from 0.5 AU to
1 AU is a factor of 2. The factor span from 1 AU to 2 AU is also a
factor of 2. Equal numbers of planets fall in intervals with equal
factors. Planets at a distance 0.5 AU from a solar-type star would
possibly be habitable if they had high reflectivity and a low
greenhouse effect. But if you put Earth there, its oceans would boil.
Similarly if you put Earth at 2 AU, it would freeze over. However, if
you put a planet with a low reflectivity and a high greenhouse effect
there, it could stay warm enough to support life. The rmax/rmin limit
for a given planet, given its particular reflectivity and greenhouse
effect, is narrow: 1.87. Now 1.872.2 ≈ 4. Thus, approximately
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2.2 factors of 1.87 multiply to give a factor of 4, the entire range
from 0.5 AU to 2 AU for a solar-type star. If equal numbers of
planets fall in each of those 1.87 factors, that means that if you are
a random Earth-sized planet somewhere between 0.5 AU and 2 AU,
there is about one chance in 2.2 (or about 45%) that you will, by
chance, find yourself in the range rmax/rmin = 1.87 that you need to
be habitable, given your particular reflectivity and greenhouse effect.

If 20% of the stars in the galaxy are suitable—G and K stars—
and if around 10% of such solar-type stars have Earth-sized planets
with a solar illumination between 1/4 and 4 times what we receive
on Earth, and if about 45% of those will find themselves in the
radius range they need to be habitable (having liquid water on their
surface, given their reflectivity and greenhouse effect), then the
fraction fHP = 0.2 × 0.1 × 0.45 = 0.009.

That exercise was simultaneously exhausting and yet
illuminating. We are using math and astrophysics to filter locations
around stars where we might find life as we know it.

But for a planet to be a candidate, other criteria must be satisfied
as well. It must have a reasonable atmosphere. If the planet is small
like the Moon, its gravity will be so weak that molecules from its
atmosphere at a temperature of 278 K will escape into space, and
the planet will lose its atmosphere, which is why the Moon has
hardly any atmosphere at all. But we are already talking about
planets with radii between 1 and 2 times that of Earth, so they
should retain their atmospheres. The planet’s orbit can’t be too
eccentric. If its orbit is a Kepler ellipse with an eccentricity e, the
ratio of its maximum distance from its star rmax to its minimum
distance from the star rmin is rmax/rmin = (1 + e)/(1 – e).
Equivalently, one can say e = ([rmax/rmin] – 1)/(rmax/rmin] + 1). The
way this plays out is that if the planet’s orbit is a perfect circle, e =
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0. If it is very elongated, e approaches 1. (That’s true for many
comets.) You might see where this is going: the planet’s orbit can’t
have a value giving rmax/rmin > 1.87, or else the oceans would
alternately boil and freeze over. That means that the planet’s orbit
must have an eccentricity e < 0.30, so that it never wanders out of
its habitable zone, lest it freezes or boils its precious liquid water. If
you meet an extraterrestrial, you can say, “I bet your home planet
has an eccentricity that is less than 0.30.” He or she, or more likely,
it, will be duly impressed.

The eccentricity of Earth’s orbit is only e = 0.017. That’s no
accident—it gives us a good climate without wild fluctuations. Or
more accurately, it’s no accident that we evolved on a planet with a
low-eccentricity orbit. Fortunately for the search for life, most Earth-
like planets discovered by the Kepler satellite have low eccentricities.
They often appear in multiple-planet systems, where the orbital
interactions between and among the planets tend to circularize their
orbits over time. The planets settle down into orbits that stay away
from one another. In multiple-planet systems, the Kepler satellite has
found that successive planets often have orbital periods that on
average are larger than the preceding one by a factor of at least 2.
Using Kepler’s third law (P2 = a3), that means that successive
planets have orbits that are each larger than the preceding one by a
factor on average of at least 22/3, or 1.6. That’s a factor about the
1.87, rmax/rmin width of the habitable zone for a particular planet.
You can get lucky and have two planets in closer orbits than that or
have a high-reflectivity, low-greenhouse-effect planet close in and a
low-reflectivity, high-greenhouse-effect planet farther out, but on
average, we’re looking to find at most one habitable planet per star
system.
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People once thought that binary star systems would have no
planets. Since more than half the stars in the galaxy are in binaries,
this would cut our fraction of candidates by a factor of 2. But the
Kepler satellite has found planets in binary star systems. This is okay
for your habitability if you have two solar-type stars orbiting each
other with a separation of 0.1 AU and you are √2 AU = 1.41 AU
away. You will then get the same illumination as we do on Earth. You
will just have two stars in your sky (like the planet Tatooine does in
Star Wars IV). The two stars are such a tight pair that they will not
disturb your dynamics. But if you have two solar-type stars with a
separation of 1 AU, it will be hard to find a habitable place that
sustains a stable planetary orbit, since your gravitational allegiance
will continually be swapped from one star to the other. If, however,
the two solar-type stars orbit with a separation greater than 10 AU,
that is fine again too, because you can just orbit one star at 1 AU
and see the other one in the distance. Being so far away, the other
star will not make your orbit unstable, and it won’t make you too
hot. Of course, you don’t want to be in a star system with even one
massive star, because it will become a red giant and die before you
have had time to evolve intelligence.

These three additional factors—atmosphere, eccentricity, and
binary troubles—each lower the probability of a star having a planet
in a habitable zone, but combined, they probably don’t lower fHP by
a factor of 2. Thus, I will just lower fHP from 0.009 by a little to fHP ~
0.006.

When Frank Drake first wrote his equation in the 1960s, we had
not yet discovered any planets orbiting other stars. So fHP was just
anyone’s guess. But now we have the data to refine our estimate.
This is how the equation is supposed to work. It encourages us to
get the data and find the factors.



222

The result that fHP ~ 0.006 is empowering. Let’s see what we can
do with this. The nearest star is 4 light-years away. Go 10 times as
far away, out to 40 light-years. That sphere of radius 40 light-years
will have 1,000 times as much volume as a sphere of radius 4 light-
years, and within that sphere you will find of order 1,000 stars. With
fHP ~ 0.006 you expect, on average, to find at least six habitable
planets within this radius. Yes, within 40 light-years of the Sun, we
expect to find habitable planets orbiting other stars! That means
TV episodes of Star Trek in its first season, wafting outward at the
speed of light as TV signals, have probably already washed over
another habitable planet with liquid water on its surface.

In the 1970s, the British Interplanetary Society conducted a
study, called Project Daedalus, of the possibility of an interstellar
spacecraft. It envisioned a 190-meter-tall, two-stage spacecraft,
powered by nuclear fusion, using 50,000 tons of deuterium and
helium-3. That is about twice as tall and 16 times as massive as the
Saturn V rocket we used to send astronauts to the Moon. This
enormous fusion-powered rocket could achieve a velocity of 12% of
the speed of light. It would have a 500-ton scientific payload,
including two 5-meter optical telescopes as well as two 20-meter
radio telescopes. It would take this ship 333 years to go 40 light-
years. Given what we now know, this ship could reach a habitable
planet within 333 years. Telemetry from the flyby would reach Earth
after another 40 years, for a total of 373 years to hear back from it.

Or better yet, take the same size rocket and use matter and
antimatter fuel instead. This would be quite an engineering
challenge—keeping the matter and antimatter safely apart until
combining them in the engines—but it would convert 100% of the
mass of the fuel into energy via Einstein’s equation E = mc2. This is
much more efficient than deuterium–helium-3 fusion, which
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produces helium-4 and hydrogen by converting only 0.5% of the
fuel’s mass into energy. With matter-antimatter fuel, the same-sized
rocket could take ten astronauts and land them on a habitable
planet, 40 light-years away. They would start by accelerating at 1 g
(9.8 meters per second per second, the gravitational acceleration we
experience on Earth’s surface) for a period of 4.93 years using the
matter-antimatter fuel. This would be comfortable for the
astronauts, who could walk about the cabin just as they do on Earth.
The craft would achieve a velocity of 98% of the speed of light.
Then it would coast at a speed of 98% of the speed of light for
32.65 years, and finally turn the rocket around and decelerate at 1 g
for 4.93 years. The astronauts would slow to a stop and arrive at the
star 42.5 years after launch. Due to relativity effects discovered by
Einstein (about which Rich will have much more to say in chapters
17 and 18), by traveling so close to the speed of light, the
astronauts would age only 11.1 years during the trip, while Earth
would have passed 42.5 years into the future. Even if it took an
extra two centuries (after the nuclear rocket launched) to develop
the matter-antimatter technology, the matter-antimatter–fueled ship
would still beat the nuclear rocket to the goal.

For all of this calculation to matter, you must first find a habitable
planet. Forty light-years is 12 parsecs. A planet at 1 AU from its star,
40 light-years away, will be 1/12 of a second of arc away from the
star in the sky. The Hubble Space Telescope, 2.4 meters in diameter,
already has a resolution of 0.1 second of arc. A 12-meter-diameter
space telescope would have a resolution of 1/50 of a second of arc.
With the bright image of the star blocked out by a special occulting
disk, designed to minimize the flooding effects of scattered starlight,
it could in principle pick out a planet only 1/12 of a second of arc
away from its star. The James Webb Space Telescope, under
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construction now and scheduled for launch in 2018, has a
segmented mirror 6.5 meters in diameter. The next generation space
telescope after that may be able to find and take pictures of
Earthlike planets in the habitable zone out to a distance of 40 light-
years. It may be green—it may have vegetation. It may be blue—it
may have oceans. We could take its spectrum and determine
whether it has oxygen in its atmosphere—a kind of biomarker, a by-
product of photosynthesis and other chemical reactions that can
betray the existence of life.

If you multiply the number of stars in the galaxy (300 billion) by
fHP (0.006) and stop your calculation here, you get a nice looking
number, the number of planets in the habitable zone: 1.8 billion.
That’s huge. But not all of them count. Of those in the habitable
zone, we are looking for the fraction fL of those that have any life at
all. But, not just life, intelligent life. What fraction fi of those planets
with life go on to have intelligent life? I will return to these terms of
the equation shortly.

What are we up to now? So far we have the fraction of long-lived
stars with planets orbiting in their habitable zone that harbor
intelligent life, and the fraction fc of those that develop a technology
capable of communicating across interstellar distances.

The last fraction in the Drake equation is the fraction of these
civilizations that are communicating at the epoch we are observing
them now. That’s the fraction of the time during the age of the
galaxy that they are “on.” If we look randomly throughout the Milky
Way, we will randomly hit some planets that were just born, some
that are middle-aged, and some that are old. The chance of catching
a planet during its communicating phase at some random time
during the life of the galaxy is equal to the average longevity of
radio-transmitting civilizations divided by the age of the galaxy.
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That’s a fraction too. Our last fraction. Multiplying all these fractions
together, times our original number of stars, we arrive at Nc, the
number of civilizations in the galaxy from which we can receive
communications—now.

And therein are the seeds and the essence of the Drake
equation. Some of these fractions we know well. For example, we
know what fraction of stars are long lived, from our understanding of
the main sequence on the HR diagram. And we’ve looked around,
and we now have now discovered many planets. All good so far.
What fraction of these planets are Earth-sized and live in a habitable
zone? We have now just estimated that one using statistics from the
Kepler satellite. Things are coming along quite nicely.

We’ve also discovered a loophole in the habitable zone argument.
Europa, a moon of Jupiter, has an 80-kilometer-deep ocean of liquid
water covered by a 10-kilometer-thick ice sheet. As already noted,
Europa’s moon-wide ocean contains more water than all the oceans
of Earth. Yet Europa is far outside the Sun’s habitable zone. How did
it get warm? It orbits Jupiter with three other large moons. The
other moons perturb its orbit according to Newton’s laws, driving it
sometimes a bit closer to Jupiter and sometimes pulling it farther
away. When Europa is closer to Jupiter, the tidal gravitational forces
from Jupiter squeeze the poor moon into a more oblong shape.
When Europa is farther away, it relaxes into a more spherical shape.
This steady kneading of Europa heats it, melting its ice and
sustaining the liquid ocean. Somebody needs to spend the money
and send a probe to Europa to drill down through the ice layer to the
ocean below and try their hand at ice fishing. (This could be done
using a small probe heated by plutonium, which could melt its way
down through the ice.) See if they catch anything. If we found life
forms there, we would have to call them “Europeans!” Saturn’s moon
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Enceladus also has an ocean beneath an ice layer. So if we estimate
the fraction fHP by just counting planets properly heated by their
stars, we have to up the estimate in some sensible way to account
for tidally heated moons like Europa living far outside the habitable
zone yet also sustaining liquid water. We have to broaden our
concept of what a habitable zone means.

What fraction of those habitable places have life? What is fL? Our
only measure of this—our only data—comes from Earth. Biologists
boast of life’s diversity on Earth. But I suspect that if we find an
alien, that alien will differ more from life on Earth than any two
species on Earth differ from each other.

Just how diverse are we here on Earth? Line us up—it’s quite a
zoo. Tiny bacteria here, even tinier viruses over there, a jellyfish
(now called “sea jellies,” I’m told), a lobster, a polar bear. Here’s
another example. Suppose you’ve never been to Earth and someone
comes to you, and after visiting, says frantically, “I just saw an
exotic life form. It senses its prey by detecting infrared rays. It
doesn’t have any arms or legs, yet it’s a deadly predator that stalks
its prey. You know what else? It can eat creatures five times bigger
than its head.” You promptly say, “Quit lying.” But what have I just
described? A snake. A snake has no arms, no legs, and gets along in
life just fine—for a snake—stretching its jaws open, eating stuff
bigger than its head.

What else? Oak trees, and people. My point is that all this
diversity shares the same planet. And we all have common DNA, like
it or not. All life on Earth shares some percentage of its DNA with
other life forms. We are all connected, chemically and biologically.

Earth is now about 4.6 billion years old. In the early solar
system, debris left over from the epoch of formation wreaked havoc
on planetary surfaces, because large rocks and iceballs were still
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raining down, depositing enormous amounts of energy. Kinetic
energy was getting converted into heat, liquefying the surfaces of
the rocky planets, and thereby sterilizing them. That went on for
about 600 million years. When you want to start your life clock for
Earth, it’s not fair to start it at 4.6 billion years ago, because Earth’s
surface was supremely hostile to life. If you want see how quickly
life formed, don’t start there; instead, start about 4 billion years ago,
when Earth’s surface became cool enough to sustain liquid water
and enable complex molecules to form. That’s when you should start
your stopwatch.

In the old days, stopwatches for timing athletic events had a
button on the top that you’d push, and it would start, and these
things called hands would spin around until you pushed the button
on top again and the watch would stop—a stopwatch, get it? If you
watch the time-honored CBS news program 60 Minutes on Sunday
nights, they still use this mechanical museum piece, which begins
and ends their show. It is the only TV program with an opening
theme that uses something other than music. Just the ticks of the
stopwatch.

Start your stopwatch at 4 billion years ago: 200 million years
later, you’ll see the first evidence of life on Earth. We have evidence
of cyanobacteria 3.8 billion years ago. The fraction of planets in the
habitable zone around long-lived stars that might have life is looking
pretty good, because, given the chance, our planet took only a very
small percentage of the total available time to make life in the first
place. We still don’t know exactly how this process happened—it
remains a biological research frontier—but I assure you, top people
are working on it. We do know it took only about 200 million out of 4
billion years to accomplish. If making life were long and hard for
nature to accomplish, maybe then life would have taken a billion
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years, or several billion years to form on Earth. But no. It took just a
couple of hundred million years, which gives us confidence that this
fraction fL in the Drake equation might be quite high, perhaps near
1.

Of course, we’re limiting ourselves to life as we know it. In some
circles, that reference is known by its acronym, “LAWKI.” We just
don’t know how else to think about the problem with confidence. We
could write on life as we don’t know it. But that might take many
volumes to cover. Maybe they’ve got seven legs, three eyes, two
mouths, and are made of plutonium. Maybe life out there is as we
don’t know it, but we can’t figure out how to pose the right
questions. It’s a practical matter, not a philosophical one. We have
an example of life as we know it, that’s us—it’s an example of one,
but it constitutes an existence proof. You’re trying to prove that
something exists, and you have one example of that thing staring at
you on your selfie screen. The proof is already there. So, let’s start
with that and work our way from there. We also know that we are
made out of atoms that are pretty common in the universe.

In one episode of Star Trek, the original TV series, the Enterprise
crew encounters a life form based on silicon rather than on carbon.
We’re carbon-based life, but silicon is also pretty common in the
universe. In the Star Trek episode, the silicon creature was basically
a short pile of rocks that was alive and sort of waddled when it
moved. A creative story-telling leap this was. The Star Trek
producers were trying to broaden the paradigm of what kind of life
the crew would find in the galaxy. Turns out that silicon is right
below carbon on the periodic table. You might also remember from
chemistry that elements in the same column all have similar outer
orbital structures of their electrons. And if they have similar orbital
structures, they can bond similarly with other elements. If you
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already know that carbon-based life exists, why not imagine silicon-
based life? Nothing stopping you in principle. But in practice, carbon
is about ten times more abundant in the universe than silicon. Also,
silicon molecules tend to stay tightly bound, making them unwilling
players in the world of experimental chemistry that is life. Carbon
dioxide is a gas, whereas silicon dioxide is a solid (sand). We have
even discovered complex, long-chain carbon molecules in interstellar
space, such as H-C≡C-C≡C-C≡C-C≡N (with its alternating single and
triple bonds). We’ve got acetone, (CH3)2CO; benzene, C6H6; acetic
acid, CH3COOH; and many other carbon molecules out there just
floating in interstellar space. Gas clouds forged these molecules all
by themselves. The comet Lovejoy was even discovered to be
outgassing alcohol. Silicon does not form such complex molecules,
and thus has far less interesting chemistry than does carbon. So, if
you want to base life on a certain kind of chemistry, carbon is your
element. There’s no doubt about it. Whatever life forms populate the
galaxy, even if we don’t look alike, it’s a good bet our chemistry will
be similar, just because of the abundance of carbon across the
cosmos and its bonding properties.

Earth is our one example of life having formed in the solar
system, so I’m comfortable with the estimated number: (fL) ~ 0.5.
It’s midway between 0 and 1, not a sure thing—a 50-50 chance.
What’s next? The fraction of planets in orbit around long-lived stars
in the habitable zone that have life but also have intelligence. This
doesn’t look too good.

By whatever scheme you devise to measure intelligence on
Earth, humans tend to sit at the top. Big brains seem to matter, and
we have big brains, but elephants and whales have even bigger
brains; so maybe it’s not just big brains. Maybe it’s a ratio. The ratio
of your brain’s mass to your body mass. Perhaps that’s what really
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determines intelligence. Humans have the biggest brains compared
to our bodies of any animal in the animal kingdom. We define it, so
we get to put ourselves at the top. But perhaps our hubris prevents
us from thinking about it any other way. Let’s assert that we are
intelligent, and let’s define intelligence as, for example, the capacity
of a species to do algebra. If intelligence, which we claim we have,
is defined this way, then we’re the only intelligent species on Earth.
Porpoises are not doing algebra underwater. No matter how complex
and thoughtful their behavior seems to be, they’re not doing
algebra. No other species in the history of the world, besides us, has
ever done algebra, so we’re intelligent. For the sake of this
conversation, let’s define it that way. Suppose we are looking for life
that we can have a conversation with. We would not use English, but
some language that we presume is cosmic: that would be the
language of science, the language of mathematics.

If intelligence is important for species’ survival, don’t you think
that feature would have shown up more often in the fossil record? It
hasn’t. Just because we have it doesn’t make it something really
important for survival. You know, after the next global catastrophe,
the roaches will likely still be here, right alongside the rats, and we
will be extinct. A lot of good our brains will have done us then.

Now, maybe our intelligence gives us the chance to alter this
fate, as we might have altered the fate of the dinosaurs. There’s a
New Yorker cartoon by Frank Cotham showing two lumbering
dinosaurs hanging out together, and one of them says to the other,
“All I’m saying is now is the time to develop the technology to
deflect an asteroid.” Meanwhile, as we know, an asteroid is headed
toward them to take them out—permanently. Perhaps we can use
our intelligence to prolong the natural life expectancy of our species,
by going out to space and batting asteroids out of the way before
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they destroy us—if we are willing to give NASA the money to do it.
But that’s not the only threat. There’s also the threat of unforeseen
emergent diseases. Look at what happened to the elm tree in
America. Most elm trees in New England were killed off by a fungus
carried by the elm bark beetle. Imagine if something like that were
to attack us. A novel virulent flu virus might be all it would take to
do us all in.

Intelligence is no guarantee of survival. Sight, however, seems to
be pretty important. Organs of sight have evolved by natural
selection in many different species of animals. The human eye has
nothing in common structurally with the fly’s eye, which has nothing
in common structurally with the eye of a sea scallop. Although there
seems to be just one primordial gene for making eyes, these
different kinds of eyes arose along different evolutionary paths. Sight
must be pretty important for survival. What about locomotion,
having some way to get around? Maple trees don’t have legs to run
with, but they bear seeds with little wings to help the wind spread
them far and wide. Locomotion seems to be important, because we
see all kinds of ways of making it happen: snakes slither, lobsters
walk, jellyfish use jet propulsion, bacteria use flagella. Many insects
and most birds fly. People walk, run, swim, take cars, trains, boats,
airplanes, and rocket ships, so we really get around. But we are still
the only ones alive on Earth doing algebra, which doesn’t give me
much confidence that intelligence is an inevitable consequence of
the tree of life. Evolutionary biologist Stephen Jay Gould has
expressed similar views. This all suggests the fraction fi might be
small. To indicate that, set fi < 0.1, realizing it could be much
smaller. That’s a different opinion compared with some of my
colleagues, some of whom work at the SETI institute. They pretty
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much require that this fraction fi be high—otherwise, what are they
looking for? They know they won’t be talking to bacteria.

Once you’ve evolved intelligence, maybe technology becomes
inevitable. I might even assume that: fc ~ 1. You can do algebra,
you have a curious brain, you want to make life easier, you want to
have vacations, you want to watch HBO, and so forth; with such
motivations, the fraction of intelligent beings who create technology
might be high. After all, the only species we know that is able to do
algebra did go on to develop technology for communicating across
interstellar distances. But if technology contains the seeds of its own
undoing (e.g., by the invention of ever-cleverer ways of killing one
another and destroying our planet), then I’m sorry, the duration of
your technological, communicating culture may be a small fraction of
the age of the galaxy. Rich has an argument based on the
Copernican Principle (i.e., your location among citizens of radio-
transmitting civilizations is not likely to be special), which he
discusses in the last chapter of this book, suggesting that the mean
longevity of radio-transmitting civilizations is likely to be less than
12,000 years. If you divide by the age of the galaxy, that is a tiny
fraction.

The point is, you put your best numbers into the Drake equation
and at the end find what your estimated number of communicating
civilizations might be. Whole textbooks have been written analyzing
the terms of this equation. This is how we organize our thoughts
about the search for life.

The Drake equation makes a cameo in the movie Contact, the
1997 film based on a story by Carl Sagan and his wife Ann Druyan.
(I recently hosted a new version of the TV series Cosmos with her
and colleague Steven Soter, co-writers with Sagan of the original
series from 1980.) Contact was clever enough to avoid actually
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portraying the aliens, because what would they look like? What
should they look like? We don’t know. In 1950s B-movies, there was
always some actor in a suit playing an alien, and all the aliens from
other planets always had a head, two arms, two legs, and walked
bipedally. In the 1982 film ET, the extraterrestrial is a cute, funny-
looking creature, but still has two eyes, two nostrils, teeth, arms,
neck, legs, knees, feet, and fingers. Compared to a jellyfish, ET is
identical to a human being. That’s poor imagination from Hollywood.
As already noted, if you’re going to come up with a new life form, it
had better be more different from anything on Earth than any two
life forms on Earth are from one another. Even the 1979 space
thriller Alien, which had a creature that was a bit different, which
showed some creative investment, still had a head and teeth.

Back to Contact. My first attendance at a world premiere of a film
ever was for Contact. A personal invitation was extended to me,
because I was friendly with Carl Sagan and Ann Druyan from years
past. There were two embarrassing moments for me, which arose
simply because I don’t usually hang out in Hollywood. You walk the
red carpet, which is lined with photographers, and once you enter
the theater, it’s all done up in movie posters and other themed
ornamentation. And of course, there is popcorn and soda on display.
So I reach for a tub of popcorn, and ask the guy behind the counter,
“how much?” and he replied, “fifty dollars,” temporarily freaking me
out. After briefly basking in my despair, he declared, “of course it’s
free.” And after 5 seconds of rational analysis, I said to myself, of
course it’s free, it’s got to be free. Why would they charge you for
popcorn at a World Premiere? I begged forgiveness, quickly
confessing that I’m clueless, from the East Coast. And then after the
screening, there was a reception where every cocktail table had a
small telescope, or other quaint astronomical instrument. I thought,
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this was a classy touch, and wondered where they got these table
ornaments; some amateur astronomy group must have loaned them
these telescopes. I had to know, because it must have been a pretty
active astronomy group to own that much hardware. So I went up to
the event organizer, and asked, “Where did you get these
telescopes?” He looked at me in a way such that the first part of his
next sentence surely began silently with the phrase “You idiot,”
followed by an audible, “we got it from a prop house.” My second
stupid East Coast question of the night. Okay, prop houses have
everything, including telescopes, apparently.

In the movie, Jodie Foster, who stars in the film, has a scene in
which she and Matthew McConaughey, her co-star, are sitting there
with the stars above them, while she points out stars and planets to
him. Then they slide a little closer, and she starts to recite an
abbreviated version of the Drake equation. She starts with 400
billion stars in the Milky Way. Close enough. I’ve given you 300
billion, but that is in the noise of what we’re doing, not important.
She goes on to say—and by the way, her character is a scientist
who’s searching for intelligent life in the universe—“There are 400
billion stars out there, just in our galaxy alone; if only one out of a
million of those have planets, and just one in a million of those had
life, and only one in a million of those had intelligent life, there
would be literally millions of civilizations out there.”

The first one out of a million cuts 400 billion down to 400
thousand. The second one in a million does what? It cuts it down
again, to 0.4. The third one out of a million? So, Jodie, I’m sorry,
that leaves you with 0.0000004 civilizations in the galaxy, not
millions. This was the world premiere, and guess who is sitting right
over there, one row ahead of me in the theater—Frank Drake,
himself. I’m apoplectic about this arithmetic error, and it turned out



235

Frank was completely unfazed by it. Maybe he was into the
romance. Right after Jodie delivers these lines, she and
McConaughey kiss, and in the next scene they’re in bed. So uttering
the Drake equation in that moment was indeed a bit of intense geek
romance. No denying that. But the difference between my reaction
and that of Frank Drake alerted me that perhaps I occasionally
overreact to things like this.

Apparently, Jodie Foster had been told about the error, much too
late for anything to be done about it. She was flustered, because she
had studied that line so hard, and worked on how to deliver it,
keeping both its rhythm and the romance in motion. But who’s to
blame here? It turns out Jodie Foster read the script correctly. Do
you go back and blame the screen writer? Maybe. The script
supervisor? Possibly. Do you blame Carl Sagan, when he had been
dead for a year? Of course not. Someone made a mistake. 1

Overall, I thought it was a brilliant film; riding the religion–
science edge intelligently (McConaughey’s character is a religious
philosopher), recognizing that there are many people who feel all
kinds of ways about these things. It also accurately captured the
extent to which pop culture, crackpots included, would react to the
discovery of alien intelligence. Generally crackpots react even when
we don’t discover stuff. I have boxes of mail from people who send
me their latest theories of the universe. I have one postcard that
says, “when I gaze upon the Moon at night, it makes my beer taste
better than it ought to. What should I do?”

Just for fun, and realizing their uncertainty, let’s put the numbers
we have discussed into the Drake equation, and consummate the
calculation:

Nc = Ns × fHP × fL × fi × fc × (Lc /Age of the Galaxy).
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Nc = 300 billion × (0.006) × (0.5) × (<0.1) × 1 × (<12,000
years/10 billion years).

Nc < 108.

According to our latest estimates for each term in the equation, we
might expect to find up to a hundred civilizations in the galaxy
communicating with radio waves now. Our biggest radio telescopes
can detect versions of themselves—their extraterrestrial counterparts
—all the way across the galaxy. So we have a chance. We have only
begun to search.

Besides, there are about 50 million other galaxies like ours within
2.5 billion light-years of us; that multiplies the number by 50 million,
giving us possibly up to 5 billion extragalactic, radio-broadcasting
civilizations. All the galaxies in this bunch are billions of years old at
the epoch we are seeing them—plenty of time for intelligent life to
have developed within them, if it were to develop at all. The most
distant of these extragalactic civilizations (2.5 billion light-years
away) would be roughly 40,000 times as distant as the most distant
ones we might find in our own galaxy (62,500 light-years away). The
inverse-square law would tell us that a typical extragalactic
civilization would have a radio brightness only 1/1,600,000,000 as
large as those in our galaxy. That’s why people usually consider
looking for extraterrestrial civilizations only in our own galaxy.

The hunt for extragalactic civilizations is not as hopeless as it
might at first appear. Intelligent civilizations could beam their signals
all over the sky or take the same amount of energy to beam a
focused, more intense signal to a tiny region of sky. A civilization
could make itself appear 10 times as luminous by beaming all its
energy toward 1/10 of the sky. A civilization could make itself appear
50 million times as luminous, by beaming to only 1/50-millionth of
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the sky. Most observers would miss its signal, but for those few
within its beam, it would be visible out to great distances. In fact,
Frank Drake himself used this strategy in 1974, when he co-opted
the 1,000-foot-diameter Arecibo radio telescope to send a narrow-
beam radio signal to the globular cluster M13. (Turns out they did
not send the signal to where M 13 would be when the signal arrives.
The cluster’s motion in orbit around the Milky Way will have taken it
out of the beam by the time the beam arrives. So the signal will miss
the globular cluster entirely, but that detail is not important here.) If
civilizations adopt various beaming patterns, some emitting in all
directions and some in narrow beams, this naturally leads to a very
broad distribution in apparent luminosity called Zipf’s law, where the
signal with the highest apparent luminosity exceeds the Nth highest
one by about a factor of N. This means that with 50 million galaxies,
the civilization with the highest apparent luminosity will appear
about 50 million times as luminous as the highest apparent
luminosity radio transmitter in our own galaxy. With 50 million times
as many chances, we just might get lucky and fall in someone’s
really bright, narrow beam. Thus, the brightest extragalactic
civilization might have an apparent brightness 1/32 (=
50,000,000/1,600,000,000) times as bright as the brightest one we
see in our galaxy. On this reasoning, searches for extragalactic
civilizations should be undertaken as well.

Finally, some caveats about the Drake equation. The habitable
zone may be even narrower than we have figured. If Earth were
farther out than it is, our planet would be colder and form more
polar ice; the reflectivity of Earth’s surface would go up, reducing the
absorption of solar flux, and Earth would get colder still. You could
trigger a runaway ice age. If you were to place Earth closer to the
Sun, the ice would melt, the reflectivity would go down, and Earth
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would get hotter still. Methane trapped in peat would be released,
further adding to the greenhouse effect.

The Sun is getting hotter as it evolves over billions of years. To
compensate, the greenhouse effects will have to lessen or the
reflectivity will have to increase, to keep the range of temperatures
on which all of civilization is based. If a star evolves in luminosity
over billions of years, the habitable zone will move outward, and a
planet would need to remain in the habitable zone long enough for
intelligent life to develop. As mentioned before, we think that the
planet has to be continuously habitable for billions of years for life to
have sufficient time to evolve intelligence.

Interestingly, life itself can affect the balance too. If the star is a
main sequence M star, and evolves not much at all in 10 billion
years, the planet might be habitable for simple life at the beginning,
but when that life turns its carbon dioxide (CO2) atmosphere into an
oxygen-rich atmosphere, the greenhouse effect will decrease,
perhaps sending it into a permanent ice age. This is another reason
M stars may not be ideal for forming intelligent life.

Life can affect the habitable zone in other ways. Carbon dioxide
from the atmosphere can be captured in the form of calcium
carbonate in the shells of sea animals and deposited in sedimentary
rock (limestone) when they die, thereby lessening the greenhouse
effect. Vulcanism (volcanic activity) can pump CO2 into the
atmosphere, increasing the greenhouse effect. And, of course, life
forms like humans can dig up long-buried fossil fuels like oil and coal
from ancient organisms, and burn them, pumping more CO2 into the
atmosphere. Estimates of the habitable zone for a given planet
therefore depend intimately on its geology, meteorology, and even
its biology.
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11
THE INTERSTELLAR

MEDIUM
MICHAEL A. STRAUSS

We now move from the study of individual stars and planets to a
broader view of how stars fit into our own Milky Way galaxy and the
interaction between stars and what we call the interstellar medium.
So far we have talked about the space between the stars as if it
were essentially empty, but I want to convince you in this chapter
that the huge volume of space between the stars actually contains a
large amount of material—it’s just thinly spread out. Interstellar, of
course, means between the stars, while medium means “stuff.” So
the interstellar medium is the “stuff between the stars.”

Let’s take a look at the interstellar medium, which has produced
many of the most beautiful images in astronomy.

Figure 11.1 is a composite picture compiled from a variety of
images of the Milky Way. It illustrates the full sphere of the sky,
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projected in a clever way onto a flat plane. The band of light called
the Milky Way that we sometimes see arching across the night sky
actually stretches in a full circle all the way around the celestial
sphere, tracing out what we call the galactic equator. Our Milky Way
galaxy is a disk of stars, and because we are located in this disk,
when we look out into it, we see a band of light circling the sky. The
brightest part of the Milky Way (toward the galactic center, in the
center of this picture) is not clearly visible from mid-latitudes in the
Northern Hemisphere. If you ever get to the Southern Hemisphere,
on a clear moonless night away from city lights, look up! Especially
from March through July, the southern view of the Milky Way is
tremendously dramatic, much brighter than what those of us who
live in the North can see.

Since we are halfway out from the center in the disk, the picture
gives the appearance that we are looking at the Milky Way edge-on
from outside. One of the things you will notice right away is that the
Milky Way is not smooth, but seems to have black blotches or
patches in it. If you look at it with a telescope, you’ll see (as Galileo
famously did) that the diffuse light of the Milky Way actually is due
to combined light of myriad stars, but there are regions (dark lanes)
in which no stars are apparent. One hundred years ago, astronomers
argued about what could account for these lanes. One possibility
they considered was that the distribution of stars is intrinsically
patchy, and the dark regions are simply those places in which there
happen to be very few stars. Alternatively (and this is the right idea),
there is a smooth distribution of stars, but something is blocking our
view of them. That something is indeed the interstellar medium.
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FIGURE 11.1. Panorama of whole sky showing the Milky Way. Distant stars in the
Milky Way form a band of light that circles the sky along the galactic equator,
mapped as a straight horizontal line across the center of the map. The Milky Way
galaxy’s center is in the center of this figure. Note the dark lanes and patches
along the Milky Way where background stars are obscured by dust. Photo credit:
Adapted from J. Richard Gott, Robert J. Vanderbei (Sizing Up the Universe,
National Geographic, 2011) Based on data from Main Sequence Software.

One way the interstellar medium manifests itself is by being quite
opaque. It is thin stuff, but the volume of space it occupies is large.
In Earth’s atmosphere, even a very thin haze or a small amount of
smoke can obscure distant objects. The interstellar medium has tiny
dust particles just like those in smoke. Indeed, “dust” is the technical
term astronomers use to refer to these particles, but perhaps
“smoke” would be a better word. This material is highly rarified, but
over enormous distances, its effects mount up and can absorb the
light of background stars. In some directions, the cumulative effect
of the dust is so pronounced as to completely obscure the light of
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background stars. Because of dust, for example, the very center of
the Milky Way is completely obscured to visible light.

It turns out that the dust obscures light of short wavelengths
more than it does long wavelengths. At longer infrared wavelengths,
the dust causes far less absorption than it does in visible light, and
one can get a largely unobscured view of the Milky Way. Figure 11.2
is a close-up picture of the center of our Galaxy taken with the Two
Micron All-Sky Survey (or 2MASS, an appropriate acronym, since this
survey was led by astronomers at U Mass, the University of
Massachusetts). As the name implies, the 2MASS uses infrared
wavelengths of about 2 microns (2 × 10–6 meters), considerably
longer than visible light (0.4–0.7 microns). You can see that the light
in the picture is coming from individual stars. The effects of dust are
still apparent but are not nearly as extreme as in visible light.
Preferentially suppressing blue light from an object makes it appear
red. Therefore, when we see stars through dust they appear
“reddened” relative to their normal color. The brightest small red
clump peeking out from behind the dust at the upper left is the
galactic center itself, a tight group of stars which harbors a 4-million-
solar-mass black hole.
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FIGURE 11.2. The Milky Way center. The dust of the Milky Way obscures short-
wavelength light more than longer wavelengths, giving the stars behind that dust
a distinctly reddish tinge. There are about 10 million stars in this image, which
measures about 4,000 light-years across. The exact center of the Milky Way is the
densest red spot in the upper left. Photo credit: Atlas image obtained as part of
the Two Micron All Sky Survey, a joint project of the University of Massachusetts
and the Infrared Processing and Analysis Center/California Institute of Technology,
funded by NASA and the NSF

Figure 11.3 shows a dark region called the Coalsack Nebula, a
big dust cloud that completely obscures the stars behind it, leaving a
blank spot in the sky that is quite apparent to the naked eye.
Australian Aboriginal astronomers have known of the Coalsack
Nebula for almost 40,000 years. It forms the head of the Emu, a
dark pattern in the Milky Way famous in Aboriginal lore.

Thus, the interstellar medium is far from smooth, containing
many clumps or clouds that are particularly dense. In addition to
dust, it contains gas composed of hydrogen, oxygen, and other
elements. We refer to the various fuzzy, or cloudlike, objects we see
in the sky (as opposed to the pointlike stars) as nebulae, from the
Middle English nebule for cloud or mist, which in turn comes from
the Latin nebula for mist or fog. These gas clouds do more than just
obscure our view of the stars. Figure 11.4 shows the Orion Nebula,
which can be seen with the naked eye. It is at the bottom of Orion’s
sword hanging down from his belt. Even through binoculars, it
appears markedly fuzzy, not sharp like a star. Ultraviolet light from
hot stars can excite the gas in the interstellar medium. The photons
from the hot luminous young stars in the nebula excite atoms in the
gas to high energy levels. As the electrons drop back to lower levels,
the atoms emit photons at specific wavelengths, as we saw in
chapter 4, giving rise to the colorful nebulosity we see. This
fluorescence is the same process that happens inside a neon bulb,
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and in fact, neon is one of the elements present in the interstellar
medium.

FIGURE 11.3. The Coalsack Nebula. This is a region of the Milky Way completely
obscured by a dense foreground cloud of dust. Photo credit: Vic Winter and Jen
Winter
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FIGURE 11.4. Orion Nebula. The bright colors in this star-forming region are
caused by fluorescing gas illuminated by the young bright embedded stars.
Filaments of dust are also visible. Photo credit: NASA, ESA, T. Megeath (University
of Toronto), and M. Robberto (STScI)

The Orion Nebula is an example of an emission nebula, which is
to say that its spectrum is dominated by emission lines
corresponding to various electronic transitions in the atoms. We can
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identify the specific elements in the nebula by the wavelengths of
their emission lines. The reddish color in the image is due to
emission of photons when electrons drop from the n = 3 to the n =
2 energy level in hydrogen (Hα, one of the Balmer lines, described in
chapter 6). The hint of green color is due to oxygen, and other
elements produce the remaining light. The dark regions are caused
by patchy dust, mixed in with the gas.

FIGURE 11.5. Trifid Nebula. The red light is fluorescing gas shining in hydrogen
alpha (Hα) emission , while the blue light is mostly starlight reflected from the
abundant dust. Photo credit: Adam Block, Mt. Lemmon SkyCenter, University of
Arizona

The object in figure 11.5 is called the Trifid Nebula, because it is
divided by lanes of dust into three parts. These dust lanes hide the
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emission that would otherwise make the nebula appear smooth. As
before, embedded hot stars are causing the gas to glow, and the red
emission is due to Hα. The extended blue emission to the right is
light from blue stars reflected off the dust, which acts as a sort of
mirror. We call this part a reflection nebula. Remember that blue
light going through dust is absorbed, which is why stars seen
through a dust cloud appear reddish. That blue light has to go
somewhere; it tends to be either absorbed or reflected in a different
direction. So reflection nebulae tend to be blue.

The Pleiades is a young cluster of stars which is easily visible to
the naked eye. Pictures taken with a large telescope (see figure 7.2)
show that its stars are illuminating dust, resulting in a blue reflection
nebula. Each blue star is surrounded by a blue fuzzy patch.

The interstellar medium is the raw material from which stars are
made, as we touched on in chapter 8. The interstellar medium is
quite diffuse over most of the Milky Way galaxy, but in certain
regions, such as in emission nebulae and dark clouds, it is relatively
dense—these are the regions that are ripe for star formation. Gravity
pulls a small knot in the cloud of dust and gas together. As it
collapses, it heats up, converting its gravitational potential energy to
kinetic energy as it falls inward, eventually becoming hot and dense
enough for thermonuclear reactions to take place, and a star is born.
The core of the Trifid Nebula is filled with massive hot blue stars.
These stars live fast and die young. So these stars must have been
born recently.

The scale in which this is happening is enormous. In the Orion
Nebula, we have observed about 700 stars in the process of forming,
many of which have disks of gas and dust surrounding them that
may eventually form into planets. As in the Orion and Trifid Nebulae,
stars tend to form in large groups rather than in isolation. With time,
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the radiation and stellar winds from the young stars evaporate and
blow away the dust surrounding them, gradually unveiling the stars.
Young stars also often emit winds, consisting of hot gases emitted
from their surface, analogous to—but stronger than—the solar wind
that our own Sun emits. These winds sculpt the gas and dust around
them, which can give some nebulae a windswept look.

The full details of how stars form are poorly understood; it is one
of the most important unsolved problems in astronomy. Not all
dense regions of the interstellar medium are collapsing to form
stars; we don’t have a complete picture of why star formation
proceeds in some regions of the Milky Way but not in others. We do
know that the winds from the first stars forming in a region tend to
blow away the gas and dust that surrounds them, which keeps
additional stars from forming from this material. A star like the Sun
has a random motion relative to its neighbors of about 20 km/sec. In
the 4.6 billion years since the Sun formed, it has wandered far from
its stellar nursery, where it was born. (Yes, that is the actual term
astronomers use!) It is thus not possible to determine which stars
are its siblings—those born along with it. Over hundreds of millions
of years, groups of stars dissipate and spread around the Milky Way;
most older stars in the Milky Way disk are either single (like the
Sun), in pairs, or in groups of just a few stars.

We have now painted the broad outlines of the birth and life
cycles of stars. Stars are formed out of the interstellar medium. The
lowest-mass stars are all still burning their original store of
hydrogen; they are frugal enough to continue doing so for more
than a trillion years. Stars with masses similar to the Sun or
somewhat higher will become red giants and eventually return some
of their material to the interstellar medium in the form of planetary
nebulae. Stars with cores more than twice the mass of the Sun (total
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main-sequence mass more than 8 times that of the Sun) will explode
much more dramatically as supernovae, sending the heavier
elements they have created into the interstellar medium. These
heavier elements can then be incorporated into the next generation
of stars. By this process, the interstellar medium becomes more and
more enriched by elements heavier than hydrogen and helium.
These heavier elements make up most of the world around us.
Earth, for example, is made up mostly of iron, oxygen, silicon, and
magnesium. Our own bodies are mostly hydrogen, carbon, oxygen,
and nitrogen, together with smaller amounts of other heavy
elements. Heavy elements up to iron are made by fusion in the cores
of dying stars. The rest of the naturally occurring elements all the
way to uranium form as heavy nuclei merge with neutrons in the
cores of red supergiant stars, or in the envelopes of stars about to
explode as supernovae, or in the collision of two neutron stars in a
tight binary. The details of these processes are still not well
understood and are a current area of research.

The Milky Way is like a living ecosystem, with stars living and
dying. Each generation of stars contributes material to the
interstellar medium, which gets incorporated into the next
generation. The heavy elements are the raw material out of which
planets—locations where life can exist—form. It’s both humbling and
awesome to realize that most of the material in our bodies and
everything that surrounds us has been produced through
thermonuclear processing in stars.

I mentioned that one way to create elements heavier than iron is
in the collision of two neutron stars in a tight orbit. We know that
such tight neutron-star binaries exist. Russell Hulse and Joe Taylor
discovered two neutron stars, each with a mass of 1.4 solar masses,
orbiting each other once every 7.75 hours. The diameter of the orbit
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is about 3 light-seconds, somewhat smaller than the diameter of the
Sun. The two neutron stars are slowly inspiraling due to emission of
gravitational waves, an effect predicted by Einstein’s theory of
general relativity. Indeed, their measurements are in beautiful
agreement with general relativity’s predictions, and Taylor and Hulse
were awarded the Physics Nobel Prize for their discovery in 1993.
The two neutron stars will continue their slow death spiral toward
each other until they eventually collide and merge, about 300 million
years from now. Enrico Ramirez-Ruiz of the University of California,
Santa Cruz, estimates that one such collision could eject a Jupiter-
mass of gold. Think of it: the atoms of gold in my wedding ring
could have been born in a collision of two neutron stars billions of
years ago!
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12
OUR MILKY WAY
MICHAEL A. STRAUSS

Most of the stars that you can see with your naked eye are tens,
hundreds, or thousands of light-years away. Until we were able to
see and understand the nature of more distant objects through
telescopes, that was the full extent of the known universe. The
history of astronomy has been a progression of ever-greater
understanding of just how large the universe is.

Back in the time of Copernicus, our universe consisted of the
solar system, surrounded by distant stars, about which we knew
very little. Galileo Galilei, who was the first to point a telescope to
the heavens, saw that the light from the Milky Way comprises
myriad (indeed, billions of) individual stars. Astronomers quickly
understood that our concept of the universe needed to be much
broader than previously realized.



255

In 1785, William Herschel (who also discovered Uranus) counted
the number of stars visible through his telescope in different
directions to make a map of the Milky Way galaxy. He reasoned that
the number of stars seen in any direction was a reflection of the
extent of the Milky Way in that direction. From his observations, he
concluded that the Milky Way had a flattened lens shape, and we
were located near the center. In 1922, the Dutch astronomer
Jacobus Kapteyn completed a more comprehensive survey of the
Milky Way. It is amazing that the Netherlands, which is famous for
its cloudy weather, has produced so many distinguished
astronomers! Like Herschel, Kapteyn made accurate counts of the
stars in different directions, now using much more sensitive
astronomical photographs taken in different directions of the sky.

This is a tricky business, of course. Remember the inverse-square
relationship B = L/(4πd2) between the brightness B, distance d, and
luminosity L of a star. If we see a bright star, we don’t know a priori
whether it is a very luminous star at a great distance, or a less
luminous star that is closer. Kapteyn did the bulk of his work before
Hertzsprung and Russell demonstrated that the color of a main-
sequence star enables one to infer its luminosity (see chapter 7).
Kapteyn did the best he could, and after many years of careful
measurement, came up with a model for the known universe similar
to that of Herschel: it was shaped like a lens 40,000 light-years in
diameter, with the Sun just 2,000 light-years from the center.

Previous to Copernicus, people thought Earth was the center of
the universe. After Copernicus, the Sun became the new center of
the known universe. In the centuries that followed, astronomers
began to understand that the Sun was a star, like all those seen at
night, but Kapteyn still located the Sun more or less at the center of
their distribution. But about the time Kapteyn was doing his work,
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scientists started to understand the effects of dust in the interstellar
medium on the apparent brightnesses of stars (see chapter 11). The
obscuring effects of that dust, if not properly taken into account,
could distort one’s understanding of the distribution of stars. Where
dust dims the stars in a region of sky, you will see fewer stars. If the
dust is so thick that the stars become completely invisible, you may
be fooled into thinking that there is a hole in the distribution of stars.
As astronomers began to understand how extensively dust is
distributed in the Milky Way, they realized that Kapteyn’s picture of
the universe was amiss.

Harvard professor Harlow Shapley took a different approach.
Sprinkled around the Milky Way are about 150 globular clusters,
agglomerations of up to a million stars each. Globular clusters are
beautiful objects, as illustrated by the picture of M13 in figure 7.3. In
1918, Shapley was able to estimate distances to the globular clusters
and thus map their distribution in three dimensions. Given that these
clusters are one of the components of the Milky Way, you might
guess that they would be distributed more or less centered on the
distribution of stars that Kapteyn was trying to map—that is, more or
less symmetrically around the Sun. Instead, what Shapley found
changed our conception of the universe: the center of the
distribution of globular clusters was (to use the modern value) about
25,000 light-years from the Sun. The Sun was definitely off center.
Shapley’s globular clusters showed that the Sun was not in the
middle of the known universe (which was the Milky Way, according
to Shapley), but rather on its outskirts, and the full extent of the
Milky Way was several times larger than Kapteyn had realized.
Kapteyn had been horribly misled by all that dust. It turns out that
the dust in the Milky Way is mostly concentrated to its central disk,
or galactic plane, whereas the globular clusters mostly lie above or



257

below this disk. Since the globular clusters are out of the galactic
plane, the dust affected Shapley’s analysis much less than it did
Kapteyn’s. Shapley was in effect the new Copernicus, showing that
the Sun was not at the center of the Milky Way, that is, not at the
center of the universe we could observe.

This was the extent of the known universe as it was understood
by Shapley roughly 100 years ago: a flattened structure (the Milky
Way), perhaps 100,000 light-years across, whose center lay 25,000
light-years from the Sun. These scales are enormous: one light-year
is 10 trillion kilometers, so 100,000 light-years seems
incomprehensibly large. But major discoveries in the 1920s, as
discussed in chapter 13, made it clear that the visible universe is
many orders of magnitude larger than even our enormous Milky Way
galaxy.

Let’s try to visualize just how large the Milky Way is. The nearest
stars are about 4 light-years away, or 4 × 1013 kilometers. Divide
this by the diameter of the Sun, 1.4 million kilometers. This will tell
us how many Suns we would have to lay side by side to reach to the
nearest star: 30 million. Placing 30 million Suns next to each other
suggests an enormous distance indeed. The Sun itself is about 100
times the diameter of Earth. In other words, the distance to the
nearest stars is 3 billion times the diameter of Earth.

The stars are tiny specks compared to the enormous distances
between them. In Star Trek, every time they turn around, the
Enterprise and its crew just happen to be passing by a “class M
planet”; the writers of that show seem to have forgotten the huge
separations between the stars. Perhaps this is why they must rely so
much on their warp drive! (And we won’t even talk about the fact
that the aliens always speak perfect American English, even in the
Delta Quadrant!)
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It turns out that the distance of 4 light-years is a typical distance
between stars in our galaxy. We now know that our Milky Way is a
very flattened structure, a circular disk, roughly 100,000 light-years
in diameter, but only 1,000 or so light-years thick. A thousand light
years is a huge distance by human standards, and yet, relative to
the full extent of the Milky Way, it is actually quite tiny. Most of the
dust and the interstellar medium in the Milky Way are found in the
disk. The extent of the Milky Way is about 25,000 times larger than
the typical distances between stars, or 75 trillion times Earth’s
diameter.

The constellation of Sagittarius lies in the direction of the galactic
center. With the dust of the interstellar medium concentrated in the
disk of the Milky Way, the center of the Milky Way is heavily
shrouded by dust, obscuring our view of it. In photographs of the
Milky Way, we find regions in the disk of the Galaxy that show few
stars, indicating particularly dense patches of dust that hide the
stars behind them. The Sun lies in this disk, but if we look in
directions away from the disk of the Milky Way, there is little dust
obscuration, and we get a clear view of the universe beyond our
galaxy.

Earth and our Sun lie close to the midplane of the Milky Way.
Because the stars in the Milky Way are also largely concentrated in
the flattened disk, we see the highest concentration of stars in a
band that stretches in a full circle all around the celestial sphere. We
can only see part of that full circle above the horizon at a given time;
the remainder is beneath our feet, our view of it blocked by Earth
itself. In the Northern Hemisphere, we get the best view of that part
of the Milky Way lying in the direction away from the center of our
galaxy. Because Earth and the Sun lie far from the center, relatively
few of the Milky Way’s stars lie in that direction, and we get a
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relatively sparse view. From the Southern Hemisphere, however, one
can look directly toward the heart of the Milky Way, and the view is
much more dramatic, in spite of the obscuring effects of dust. On a
clear moonless night in May, away from city lights, in Chile, the view
is breathtaking. Among my fondest memories are those times I
spent looking up at the sky at Cerro Tololo Observatory in Chile next
to the woman whom I would later marry, with the Milky Way
dramatically splayed out across the sky over our heads.

An even better view is available if we look at the Milky Way in
infrared light. We’ve seen already that dust obscures red light less
than blue light, and infrared light is even less affected (see chapter
11). Figure 12.2 shows an infrared map of the entire sky made with
the 2MASS telescopes (the same survey that made the stunning
image of the galactic center in figure 11.2). The thin disk of the
Milky Way dominates the image, and a central bulge is now apparent
in the middle.
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FIGURE 12.1. The Milky Way over Cerro Tololo. The night sky as seen from the
Cerro Tololo Inter-American Observatory in the Chilean Andes. The large dome in
the center of the picture houses the 4-meter-diameter Victor Blanco Telescope.
The center of the Milky Way appears near the right edge of the picture. The Large
and Small Magellanic Clouds, companion galaxies to the Milky Way roughly
150,000 light-years away, are apparent on the left. Photo credit: Roger Smith,
AURA, NOAO, NSF

This map of the infrared sky is analogous to that in figure 11.1,
taken in visible light. The horizontal “equator” in the middle of this



261

projection is the galactic plane; the disk of the Milky Way, which is a
full circle on the sphere of the sky, appears as a horizontal straight
line in the figure. Although figure 12.2 is based on data in the
infrared, dust in the Milky Way still has some obscuring effects, and
the patchiness one can see along the disk is due to dust. Finally,
note the bulge in the center of the Milky Way; its slightly lumpy
appearance is a clue to the fact that it is potato-shaped, rather than
spherical as was originally believed. The Large and Small Magellanic
Clouds, satellite galaxies of the Milky Way, can be seen below the
plane of the galaxy and to the right.

Harlow Shapley realized he needed to look away from the plane
(where the obscuring effects of dust are overwhelming) to
understand the three-dimensional structure of the Milky Way. The
globular clusters in the Milky Way are not concentrated in this plane,
and thus are visible all over the sky. Shapley wanted to make a
three-dimensional map of their distribution, and therefore he needed
to measure their distances. The way to do this was straightforward
in principle, using the inverse-square law that relates brightness and
luminosity: B = L/(4πd2). Thus if we measure the brightness of any
star in a globular cluster (which is straightforward) and if we know
the star’s intrinsic luminosity (that’s the hard part), we can
determine its distance d. The correction for the effects of dust will
be relatively small, because we’re looking at a globular cluster away
from the plane of the Milky Way.
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FIGURE 12.2. The Milky Way in the infrared. Shown is the distribution of stars
over the entire sky, as measured by the Two-Micron wavelength All-Sky Survey
(2MASS), a wavelength at which the obscuration due to dust is modest. The plane
of the Milky Way galaxy stretches horizontally across the center of the map along
the galactic equator. The Large and Small Magellanic clouds are below it. Photo
credit: Atlas Image mosaic obtained as part of the Two Micron All Sky Survey
(2MASS), a joint project of the University of Massachusetts and the Infrared
Processing and Analysis Center/California Institute of Technology, funded by NASA
and the NSF

How are we going to determine the luminosity of any given star?
The main sequence shows a relationship between the color of a star
and its luminosity (see figure 7.1). Assuming our observations are
sensitive enough to identify main-sequence stars in the globular
cluster, the colors of the main-sequence stars allow us to infer their
luminosities; combining these with measurements of their brightness
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via the inverse-square law gives us the distance to the globular
cluster.

Ah, if life were only that simple. The easiest stars to measure in a
globular cluster are of course the brightest ones. All stars in the
cluster are roughly the same distance from us, so the brightest stars
we see are also the intrinsically most luminous stars in the cluster.
But these are not main-sequence stars, but rather red giants, which
display a large range of luminosities at a given color (because they
vary greatly in size at a given color). With modern telescopes, we
now have the sensitivity to observe the significantly fainter main-
sequence stars in globular clusters, but in 1918, when Shapley was
working, this was beyond the capabilities of the telescopes and
instruments available to him. Instead, he used a type of star called
an RR Lyrae variable star, a star about 50 times as luminous as the
Sun, which varies periodically in brightness.

Variable stars are those whose luminosities (and therefore
observed brightnesses) are not constant. RR Lyrae variable stars
change their brightness by a factor of 2 on timescales of less than a
day. They are pulsating, with their radius regularly increasing and
decreasing. These are the typical variables found in globular clusters.

We know that stars are in equilibrium between the gravity
holding them together and the pressure from their interior heat
pushing outward. However, after becoming red giants, some stars
become bluer and move quickly across the HR diagram. During this
time, they undergo a stage where helium burns in the core,
hydrogen burns in a shell, and the star’s equilibrium is affected by
the way the energy generated in the interior finds its way out of the
star. This causes the internal pressure to oscillate, leading to
corresponding changes in the size, and thus the luminosity (and
brightness), of the star.
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Although astronomers tend to give simple names to the objects
they study (“red giant,” “white dwarf,” etc.), variable stars are an
exception to this. When astronomers first started cataloging variable
stars in the early 1800s, they gave them Latinized names for the
constellation in which they resided. The first variable star discovered
in the constellation Lyra, the Harp, was called R Lyrae; the letters A
through Q had already been taken for other sorts of stars. When a
second one was discovered in Lyra, they called it, naturally, S Lyrae,
then T Lyrae, and so on; by then they realized that they were
running out of letters, so after Z Lyrae, the next one was called RR
Lyrae (the eponym for the entire class of variable stars like itself),
then RS Lyrae, and so on, all the way to ZZ Lyrae. Even those names
weren’t enough, so they cycled back to AA Lyrae, AB Lyrae, and so
on, running out at QZ Lyrae (and for some reason skipping the letter
J). That gets you 334 combinations; but variable stars are even
more common than that! The next variable star discovered in the
constellation Lyra was called V335 Lyrae. Astronomers are up to
V826 Lyrae as of this writing. There are many types of variable stars
known, and the terminology for them can get complicated indeed:
AM Canum Venaticorum stars, FU Orionis stars, BL Lacertae stars
(which actually turn out to be a bizarre type of galaxy with a variable
galactic nucleus), ZZ Ceti stars, and so on, each class of stars named
after the first example discovered. Cepheid variables, which will be a
key part of our study of distant galaxies in chapter 13, are named
after their prototype Delta Cephei, discovered in the late 1700s.

Shapley used RR Lyrae variable stars as standard candles to
measure the distances to globular clusters, using the fact that the
luminosities of all RR Lyraes (after averaging over their variability)
are all roughly the same. Measuring the (average) brightness of an
RR Lyrae in a globular cluster, and knowing the luminosity, allowed
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him to infer the distance to the star, and thus to the globular cluster
in which it was embedded. With the resulting three-dimensional map
of the globular clusters, he could determine the position of the
center of their distribution, finding that the Sun lies far from the
center of the Milky Way.

Applying the standard candle approach to map the distribution of
stars in the plane of the Milky Way (which is where most of the stars
are found) is significantly more difficult because of the effects of
dust. With much work over many decades, we now have a
moderately complete picture of the overall structure of the Milky
Way. Most of the stars are in a very flattened disk, with a diameter
of about 100,000 light-years. It has no well-defined outer edge, but
rather the density of stars just drops off steadily as one goes farther
out. In the center of this disk, we find a thicker, roughly potato-
shaped distribution of stars, about 20,000 light-years long, which we
call the bulge of the Milky Way. The stars in the disk are arrayed
along a series of spiral arms that radiate out from the bulge. Most of
the stars that you can see with the naked eye are within a few
thousand light-years of the Sun, in the same spiral arm in which the
Sun is embedded.

Although the Milky Way is a spiral galaxy, we can’t see this
pinwheel structure in the sky, because we’re embedded in the disk
ourselves, and the pinwheel only becomes apparent when the
distances to individual stars are measured, allowing a three-
dimensional view of the Galaxy’s structure. If we could somehow
view the Milky Way from a vantage point a couple of hundred
thousand light-years from here, where we could see it face-on, it
would look like the artist’s conception shown in figure 12.3. The Sun
is in a spiral arm about halfway out, directly below the center (at 6
o’clock in the diagram). Our galaxy is a barred spiral, because its
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bulge has a bar shape. The spiral arms start from the ends of the
bar.

Soon after we were married, my wife insisted that I no longer
wear any of my nerdy T-shirts from my college days. The one I miss
the most is the one with a picture of a galaxy, spiral arms and all,
and an arrow pointing to a spot halfway out from the center, labeled
“You Are Here.”

Not all stars in the Milky Way are located in the spiral arms and
the bulge. We have already seen that the globular clusters are
distributed in a more-or-less spherical distribution extending above
and below the plane of the disk. In addition, a sprinkling of stars, far
more sparse than those in the disk and also spherically distributed,
extends about 50,000 light-years from the center of the Milky Way.
We refer to this as the halo of our galaxy. We used to think that the
stars in this halo were pretty smoothly distributed, with a
concentration falling off gradually from the center of the Milky Way,
but as astronomers have made ever-more accurate maps of the
distribution of faint stars, they have found that the halo is anything
but smooth. It has lumps and streams in it, believed to be the
remnants of smaller companion galaxies that have fallen into the
Milky Way and been torn apart by its tidal gravitational forces.
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FIGURE 12.3. Simulated view of the Milky Way from above.
Photo credit: NASA Chandra Satellite

The stars in the bulge, and especially in the halo, tend to be old
stars that formed billions of years ago. Thus the hottest main-
sequence O and B stars, with their lifetimes measured in mere
millions of years, are simply not found there; no star formation at all
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has been occurring in the halo of our galaxy for billions of years. The
young hot stars are found almost exclusively in the spiral arms in the
disk, where star formation is occurring now.

The spiral, or pinwheel, structure of the disk suggests that the
whole structure is rotating. Indeed, this is exactly what is happening.
The entire disk is rotating around its central axis, and the Sun in
particular is moving in a roughly circular orbit with a speed of 220
km/sec. Just as the gravity of the Sun holds Earth in its yearly orbit,
so also does the gravity of the Milky Way (at least that part within
the radius of the Sun’s orbit) pull the Sun and the planets around the
galactic center in an orbit. Given a speed of 220 km/sec, and the
radius of the orbit—a whopping 25,000 light-years, it is
straightforward to calculate that the Sun goes around the Milky Way
once every 250 million years. Thus the Sun has completed
something like 18 orbits of the galaxy in the roughly 4.6 billion
(Earth) years since it formed.

To calculate the gravitational force of the Milky Way on the Sun,
we can treat the Milky Way’s mass as concentrated at its center,
25,000 light-years away, just as the gravity of Earth acts as if all its
mass were concentrated at its center, 6,400 kilometers beneath our
feet. The mass that counts is the mass of the galaxy out to the
radius of the Sun’s orbit. The gravitational attraction due to the
material outside that radius—each part pulling in different directions
—roughly cancels out.

This suggests a calculation. Given Newton’s laws of motion and
law of gravity, we found in chapter 3 a relationship between the
mass of the Sun MSun, the orbital velocity vE of Earth around the
Sun, and the radius rE of Earth’s orbit around the Sun:

GMSun/rE
2 = vE

2/rE,
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where G is Newton’s gravitational constant. Multiply both sides of the
equation by rE

2 and we get:

GMSun = vE
2rE.

We can write down a similar equation relating the mass of the Milky
Way, MMW, the velocity vS of the Sun, and the radius RS of the Sun’s
orbit around the center of the Milky Way:

GMMW = vS
2RS .

Divide the second equation by the first, and the quantity G drops
out:

MMW/MSun = (vS/vE)
2 (RS/rE).

The ratio of velocities is vS/vE = (220 km/sec)/(30 km/sec), or
about 7. The ratio of distances is: RS/rE = 25,000 light-years/1 AU.
There are about 60,000 AU in a light-year, so this ratio is 25,000 ×
60,000 = 1.5 × 109. Thus

MMW/MSun = 72 × 1.5 × 109 ~ 1011.

Thus the mass of the Milky Way (within the radius of the Sun’s
orbit) is roughly 100 billion times the mass of the Sun.

The Milky Way is made of stars, and so we can say that the Milky
Way contains roughly 100 billion stars, under the crude
approximation that all stars have the same mass as the Sun. Indeed,
the typical star in the Milky Way has a mass somewhat less than that
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of the Sun, and we haven’t accounted for those stars farther out
from the center of the Milky Way than the Sun, so a better estimate
is that there are roughly 300 billion stars in the Milky Way. Carl
Sagan in his classic TV series Cosmos often referred to “billions and
billions” of stars, in his distinctive voice. Sagan wasn’t exaggerating;
the Milky Way indeed has billions and billions—roughly 300 billion—
stars in it. We’ve used that number in Drake’s equation.

The stars in the disk are all on approximately circular orbits. Stars
are like cars on a circular racetrack. The ones on the inner lanes are
passing the ones on the outside lanes. The spiral pattern we see is
due to traffic jams in the stars as they circle. If you are on an
expressway and approach a traffic jam where the cars are going
more slowly than average, you will slow down too. Eventually you
pass through the traffic jam, and then you can speed up as the cars
speed up around you. The traffic jam represents a density wave in
the pattern of cars. The cars are most densely packed in the traffic
jam—although individual cars are continually moving through the
traffic jam and passing out of it. In the same way, a spiral density
wave in the galaxy represents a gravitational traffic jam of stars,
whose gravity pulls even more stars toward it. Furthermore, as the
stars crowd together, the interstellar gas is pulled together by the
extra gravitational force there, causing clouds of gas to collapse
gravitationally and form new stars. So the spiral arms are regions in
which stars are actively forming. Among the newly formed stars are
massive luminous blue stars, whose lifetimes are shorter than the
time it takes for them to drift out of the traffic jam of the spiral arm.
Thus, the spiral arms in galaxies are brightly lit up by newly born,
massive, blue stars. Stars do not travel on spiral paths—instead the
spiral arms shine brightly due to star formation caused by these
traffic jams of stars circling the galactic center.
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The mass of 100 billion Suns that we’ve just estimated
represents that part of the Milky Way within the Sun’s orbit. The
gravitational forces from different parts of the Milky Way beyond the
Sun’s orbit pull us in opposite directions: material just outside the
Sun’s orbit on our side of the galaxy pulls us outward, whereas stuff
outside the circle of the Sun’s orbit but on the other side of the
galactic center pulls us inward. These opposing forces effectively
cancel each other out and have no net effect on the orbit of the Sun.
The stuff inside the Sun’s orbit, like the mass of Earth, acts as if it
were located at the center. So if we can measure the orbital speed of
stars at different distances from the center of the Milky Way, we can
map out a mass profile of the Milky Way as a function of distance
from the center of the Milky Way.

What do we expect to find? The Sun is roughly halfway out to
the edge of the Milky Way, and the density of stars drops off
considerably the farther out you go beyond the Sun. Star counts
suggest the majority of the mass of the Milky Way is contained
within the Sun’s orbit. So we can apply the equation we’ve just used:

GM(<R) = v2R,

where M(<R) is the mass interior to radius R. If there is not much
mass beyond the radius of the Sun’s orbit, M(<R) becomes constant,
and beyond the Sun’s orbit we expect v2R to be approximately
constant, and v2 to be proportional to 1/R. Thus the orbital velocities
v outside the solar orbit should scale proportional to 1/√R. This
behavior is seen in the solar system; the outer planets feel a weaker
gravitational pull from the Sun and thus are moving more slowly in
their orbits than the inner planets do. We expected to find stellar
orbital velocities falling off with radius beyond the Sun’s orbit.
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Making these measurements in the Milky Way is difficult, and it
wasn’t until the mid-1980s that astronomers had determined the
orbital speeds of stars and gas over a range of distances from the
center of the Milky Way. To their very great surprise, they found that
the orbital speeds did not decrease in the outer Milky Way, but
rather stayed just about constant, as far out as the measurements
went.

So what is wrong with our reasoning? We see little starlight when
we look farther out from the center of the Milky Way than the Sun,
and we inferred therefore that there was little contribution to the
mass at those distances. We need to question that inference. We
have used the orbit of the Sun to infer the mass of the Milky Way
within its orbit; similarly, we can use speeds of stars orbiting even
farther out in the Milky Way to measure the mass enclosed in those
larger orbits. Using our equation GM(<R) = v2R, we can see that if
the velocity v stays constant, the mass interior to radius R goes up
linearly with R. The farther out you go, the more mass you find.
There is a significant component of the mass of the Milky Way
outside the orbit of the Sun that is simply not visible in the form of
stars. We call it dark matter. We have inferred its presence solely
through its gravitational effect on stellar orbits.

How much dark matter does the Milky Way contain? The answer
depends on how far out we think the Milky Way extends. The stars
mostly peter out 40,000 light-years or so from the center, but the
orbital speeds of the rare stars or clouds of gas even farther out are
about the same as that of the Sun, 220 km/sec. Our best modern
estimates tell us that the stars and interstellar medium in the Milky
Way represent only a small fraction, perhaps 10%, of the entire
mass of the galaxy. The vast majority of the Milky Way’s mass,
roughly a trillion times the mass of the Sun, is in the form of dark
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matter, extending perhaps 250,000 light-years from the center. We
infer the same mass by calculating the mutual orbit of the Milky Way
and its companion galaxy, the Andromeda Galaxy, once again using
Newton’s law of gravity. The two were once moving apart from one
another as part of the general expansion of the Universe and are
now falling together at a speed of about 100 km/sec, set to collide
about 4 billion years from now.

The Caltech astronomer Fritz Zwicky was the first to discover
dark matter, in 1933, when he measured the total mass of the Coma
Cluster of galaxies with a sophisticated version of the GM = v2R
formula, using the radius of the cluster and the velocities of the
individual galaxies moving in the gravitational field of the cluster as a
whole. He concluded that the cluster was significantly more massive
than the total of the stars and gas making up the individual galaxies
we could see. He dubbed the rest dunkle Materie in his native
German, that is, “dark matter.” As we will describe in chapter 15, this
dark matter is almost certainly not composed of ordinary atoms but
rather of elementary particles we have yet to identify.

Another very interesting form of nonluminous matter in the Milky
Way occurs right at its center. Infrared observations of the center of
the Milky Way can penetrate the obscuring dust. The stars in the
very center of the galaxy are seen to be moving on Keplerian
elliptical orbits, with semi-major axes as small as 1,000 AU (1/60 of
a light-year) and periods of 20 years or so. The object about which
they are all orbiting is invisible, but again Newton’s Laws allow us to
determine its mass: a whopping 4 million times the mass of the Sun.
It is very small (certainly smaller than the orbits of the stars around
it) and thus extraordinarily dense, and invisible. It turns out to be a
black hole, one of the universe’s most fascinating objects, which we
will consider in detail in chapters 16 and 20. Thus, our study of the
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Milky Way has led us to the frontiers of physics, from new
elementary particles populating the outskirts of our galaxy to a
massive black hole lurking in its center.
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13
THE UNIVERSE OF

GALAXIES
MICHAEL A. STRAUSS

A century ago, when Harlow Shapley was determining the
dimensions of the Milky Way and our place in it, astronomers’
consensus understanding of the extent of the universe was the Milky
Way itself. Indeed, when Shapley demonstrated that the Milky Way
had an extent of tens of thousands of light-years, he was convinced
that this enormous number proved that he had, in effect, mapped
the entire universe. However, astronomers had long been intrigued
by the nebulae they saw in their telescopes; while a star appears as
a point of light through a telescope, nebulae are extended and often
fuzzy looking. We have already encountered a variety of nebulae in
this book, including planetary nebulae, which result when red giants
throw off their outer layers; the Orion Nebula, a region of intense
star formation in which the surrounding gas fluoresces due to light
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from hot young stars; and even dark nebulae, the dust clouds that
block the light from background stars. However, there is another
class, called spiral nebulae because of their shape, whose members
closely resemble the Milky Way as we now understand it. The Milky
Way is fuzzy looking itself. However, the spiral structure of the Milky
Way disk was certainly not known 100 years ago, because, living in
the disk itself, we didn’t have a good understanding of its three-
dimensional structure, making it harder to detect its resemblance to
that larger class of objects. Remember that we have no depth
perception in an astronomical image; we cannot tell a priori by
looking at a particular nebula whether it is an intrinsically small
object at a distance, of say, a few hundred light-years, or a truly
enormous structure millions of light-years away. Figure 13.1 shows a
typical spiral nebula, M101, seen face-on. You can clearly see its
spiral arms—like a pinwheel—so astronomers just call it the Pinwheel
galaxy.

The physical nature, distance, and size of the spiral nebulae were
among the most important questions facing astronomers in the first
decade of the twentieth century. The German philosopher Immanuel
Kant had speculated as early as 1755 that the spiral nebulae were
other “island universes,” that is, objects as large as the entire known
universe, the Milky Way. Given Shapley’s determination of the extent
of the Milky Way and the small apparent angular size of spiral
nebulae, if that was true, this meant that they must be astonishingly
distant, millions or tens of millions of light-years away.

Shapley himself found this notion to be completely implausible,
and in 1920, took part in a public debate with astronomer Heber
Curtis of Lick Observatory in California on the nature of the spiral
nebulae. Curtis was convinced that the hypothesis that the spiral
nebula were galaxies like the Milky Way was correct, while Shapley
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said that the implied distances of the spiral nebulae were far too
large to be believable. As is often true in science, controversies such
as these only get settled with the advent of new and better data,
and the debate itself was inconclusive. The astronomer who made
the observations that settled the question once and for all was Edwin
Hubble, of Mount Wilson Observatories in California. He used
variable stars (a technique discussed in chapter 12) to determine the
distance to the Andromeda nebula, the brightest spiral nebula in the
sky (figure 13.2).

The Andromeda nebula is visible to the naked eye under ideal
conditions (a clear, moonless night away from city lights), and
indeed it was known to the ancients.
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FIGURE 13.1. M101, the Pinwheel galaxy. Photo credit: NASA/HST
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FIGURE 13.2. Andromeda galaxy from the Sloan Digital Sky Survey. The
Andromeda galaxy is a spiral seen almost edge on, accompanied by two small
elliptical satellite galaxies (M32 below, NGC205 above).
Photo credit: Sloan Digital Sky Survey and Doug Finkbeiner

Mount Wilson Observatory, which sits in the San Gabriel
Mountains overlooking the Los Angeles basin, had the largest
telescope in the world at the time; its primary mirror is 100 inches
(2.5 meters) in diameter. When Hubble took pictures of the
Andromeda nebula with this telescope, he found that its diffuse light
resolved into individual stars, just as Galileo had found when he
pointed his primitive telescope at the Milky Way 300 years
previously. That observation already told Hubble that Andromeda
must be quite distant, but to get real numbers, he had more work to
do. Based on repeated observations of the Andromeda nebula,
Hubble was able to identify several stars that periodically brightened
and dimmed, which he understood to be Cepheid variable stars.
These are variable stars that are more luminous than RR Lyrae stars
and have pulsation periods from days to months. In 1912, Henrietta
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Leavitt, who worked at Harvard (see chapter 7), found a relation
between a Cepheid’s period of variability and its luminosity (figure
13.3). Hubble was able to measure their periods, use Leavitt’s
relation to infer their luminosities, and, by measuring their
brightness, find their distances. The conclusion was stunning: the
Andromeda nebula lay at the then inconceivably large distance of
almost a million light-years, putting it well beyond the known extent
of the Milky Way.

FIGURE 13.3 Henrietta Leavitt, who discovered the relationship between the
period and luminosity of Cepheid variable stars, key for measuring the distances to
nearby galaxies. Photo credit: American Institute of Physics, Emilio Segrè Visual
Archives

Images of the Andromeda nebula, out to its outer edges, showed
an angular diameter of 2° on the sky. The circumference of a circle
is 2π (a bit more than 6) times its radius. So a giant circle with a
radius of a bit less than 1 million light-years will have a
circumference of about 6 million light-years. Two degrees covers
1/180 of that complete 360° circle, from which Hubble could deduce
that the diameter of the Andromeda galaxy must be about 6 million
light-years/180, or about 30,000 light-years across. Hubble was
therefore able to infer two compelling facts: (1) the Andromeda
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nebula is almost as large as the Milky Way itself, and (2) Andromeda
lies well beyond the boundaries of the Milky Way.

Moreover, the sky was filled with other spiral nebulae, which
appeared much smaller in angular size and fainter than Andromeda.
If they were similar to the Andromeda nebula, they must be even
farther away. This was a pivotal moment in the history of our
understanding of the cosmos. Hubble had shown that the
Andromeda nebula, and by extension, the other spiral nebulae, were
roughly the same size as the entire Milky Way galaxy, and that they
were situated at inconceivably large distances from us. Kant’s
hypothesis that the spiral nebulae were “island universes,” as large
as the Milky Way itself, was proven correct. The boundaries of the
known universe had just taken a dramatic leap outward.

Two decades later, astronomers realized that there was more
than one kind of Cepheid variable in the sky. When everything got
straightened out, it turned out that Hubble had actually significantly
underestimated the distance to the Andromeda nebula. Our modern
estimate of its distance is 2.5 million light-years. Furthermore,
modern photographs using digital cameras on telescopes (instead of
film) show Andromeda’s outer fainter regions extending to a
diameter of about 3° in the sky. With these larger values, we infer
that the diameter of the Andromeda galaxy (and indeed, we now call
it a galaxy, not a nebula) is about 130,000 light-years, somewhat
larger than the Milky Way. Still, Hubble’s estimate was in the right
ballpark, and his conclusion that Andromeda was another galaxy like
the Milky Way was correct. Even a rough estimate was good enough
to answer the big question posed by the Shapley–Curtis debate.
Shapley was wrong and Curtis was right.

The Andromeda galaxy is only the nearest large galaxy. The
images Hubble took with the telescopes at Mount Wilson
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Observatory showed that the sky was filled with galaxies. The
Andromeda galaxy is indeed a spiral, but the spiral arms are
indistinct and difficult to follow, partly because we are seeing the
disk nearly edge on. But other galaxies have much more dramatic
and coherent spiral arms.

Consider the Pinwheel galaxy shown earlier (see figure 13.1). We
are seeing this galaxy nearly face-on, making the spiral arms clearly
visible. It shows the same basic features as the Milky Way, including
a central bulge (somewhat smaller than the Milky Way’s bulge) and
three spiral arms radiating out from the center. The Pinwheel’s spiral
arms are quite blue, a sign they include a significant number of hot,
and therefore young, massive stars. This tells us that star formation
is ongoing in the spiral arms, just as it is in the Milky Way. You can
also see some thin dark “veins” along the spiral arms; these are dust
clouds, which are confined to the disk and arms of the galaxy, as
they are in the Milky Way. The central bulge is yellowish, indicating
that the stars there are lower in temperature on average than those
in the arms. The hot young stars seen in the arms are simply not
present in the bulge. This is a general trend seen in most spiral
galaxies, including the Milky Way and Andromeda: younger stars and
active star formation are seen in the disk and arms; older stars are
in the bulge.

Peppering the entire picture of the Pinwheel galaxy are many
points of light. These stars are not part of the Pinwheel galaxy; at its
distance (20 million light-years), individual stars would be much
fainter than this. Rather, these are stars in our own Milky Way, at
distances of perhaps a few thousand light-years, which show up
along the line of sight. They are like raindrops on the windshield of
your car. This reminds us again that when we look at the sky, we are
seeing it as if projected onto two dimensions; with no depth
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perception, we do not know which objects are close by and which
are far away. Indeed, some of the faint objects in the periphery of
this figure are not stars but are themselves other galaxies in the
background, at distances not of millions, but of billions, of light-
years. The angular diameter of the Pinwheel galaxy is about half a
degree on the sky; at a distance of 20 million light-years, its
diameter is about 170,000 light-years, about twice the size of the
Milky Way.

The galaxy in figure 13.4, called the Sombrero galaxy, has a huge
bulge (much larger than that of the Milky Way), which completely
dominates it and suggests the crown of a wide-brimmed hat. The
galaxy is oriented such that the disk is seen almost edge-on, clearly
showing how thin it is but obscuring the spiral structure. The edge-
on view of this galaxy allows us to see the effects of dust, which lies
in the plane of the disk and gives rise to the beautiful dark lanes in
the disk (the “fringe” of the hat brim), exactly as we saw in our own
Milky Way.
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FIGURE 13.4. The Sombrero galaxy. The Sombrero galaxy is a spiral with a large
bulge seen nearly edge-on.
Photo credit: NASA and the Hubble Heritage Team (AURA/STScI) Hubble Space
Telescope, ACS STScI-03–28



285

FIGURE 13.5. Center of the Perseus cluster of galaxies from the Sloan Digital Sky
Survey.
Photo credit: Sloan Digital Sky Survey and Robert Lupton

Not all galaxies have a disk—some are pure bulge, dominated by
old stars, with very little gas or dust. Hubble called these elliptical
galaxies.

Figure 13.5 shows the Perseus cluster of galaxies, in which
hundreds of elliptical galaxies congregate in a region of space about
a million light-years across. Indeed, almost every galaxy in this
image is an elliptical. In addition, we see many stars in the
foreground, because the Perseus Cluster sits behind a dense screen
of stars in our own Milky Way.
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Most luminous galaxies are either ellipticals or spirals, but some
galaxies don’t fit into either category, and we simply call them
irregular galaxies because of their irregular shapes. The Large
Magellanic Cloud, a small satellite galaxy (14,000 light-years across)
that orbits the Milky Way at a distance of about 160,000 light years,
falls into this category. It appears at the far left edge of figure 12.1,
next to the observatory dome. Indeed, it is so close that it is easily
visible to the naked eye.

The distance between the Milky Way and the Andromeda galaxy
—2.5 million light-years—is roughly 25 times larger than the size of
the two galaxies themselves. Galaxies are separated by distances
that are considerably larger than their diameters, meaning that most
of the volume of the universe is intergalactic space—the space
between the galaxies. However, we found in chapter 12 that the
distance from the Sun to the nearest star is about 30 million solar
diameters. Yet the distance to the next big galaxy is only 25 Milky
Way diameters. Even when you get your head around the sizes of
individual stars, the distances between stars are difficult to fathom.
But if you can get used to the sizes of galaxies, the distances
between them are not all that much larger. Given that galaxies are
fairly close to one another, relative to their size, you will not be
surprised to learn that they often collide with one another.

The Tadpole galaxy (figure 13.6), some 400 million light-years
from Earth, is the result of a collision of a large and small spiral, the
smaller of which appears, greatly distorted, within the arms of the
larger one at the upper left. The gravitational interaction of the two
has pulled one of the spiral arms of the larger galaxy into a long tail,
about 300,000 light-years long, sprinkled with hot blue stars. The
center of the bigger galaxy is fairly dusty, as can be seen by the dark
dust lanes. Currently, the Milky Way and the Andromeda galaxy are
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falling together under the influence of their mutual gravitational
attraction. When they collide with each other, about four billion years
from now, gravitational tidal forces are likely to pull streamers of
stars out of them like those seen in the Tadpole galaxy.

Astronomers have been arguing for decades about what happens
in such galaxy mergers. After they settle down in a few hundred
million years, do they turn into elliptical galaxies? This indeed brings
up the basic question of how galaxies formed in the first place. The
stars in elliptical galaxies tend to be older than those in spirals,
suggesting that elliptical galaxies formed earlier in the history of the
Universe. The bulges of spirals share similar properties with elliptical
galaxies, suggesting that they may have formed in similar ways. Gas
that falls later onto an already-formed elliptical galaxy can cool
before it has had time to form stars. The cooling causes the gas to
lose energy, but not angular momentum, which can make it form a
thin rotating disk. This process could make a spiral galaxy with an
elliptical bulge. The details of this process are still poorly understood
and hotly debated.

There is even more to this picture of the Tadpole galaxy. If you
look closely, you’ll see many much smaller galaxies sprinkling the
frame. These are full-sized galaxies, which just happen to be much
more distant (thus appearing fainter and smaller). Some are billions
of light-years away. Their light has thus taken billions of years to
reach us: we’re not seeing these galaxies as they are today, but as
they were when the universe was much younger. Telescopes are
time machines: they show us the distant past and allow us to study
the processes by which galaxies evolve through cosmic time. Of
course, we see any given galaxy at only one epoch of its lifetime,
but by comparing the properties of distant galaxies with those we
see in the nearby universe, we can ask how the galaxy population
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has changed over billions of years and start to address the questions
of when the galaxies formed, and why some are spirals and some
are ellipticals.
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FIGURE 13.6. Tadpole galaxy from the Hubble Space Telescope. This is actually
two galaxies that have merged, and are in the process throwing out a long tail.
Many faint and much more distant galaxies are also visible in this image.
Photo credit: ACS Science and Engineering Team, NASA
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Very long exposures with the Hubble Space Telescope have
shown thousands of faint, distant galaxies in a region of sky just a
few arc-minutes across (see figure 7.7). So there are of order 100
billion galaxies in the observable universe. Each of these barely
resolved dots of light is a full galaxy, as large as the Milky Way,
containing more than 100 billion stars. With 1011 stars in each of
1011 galaxies, we infer that the observable universe contains
something like 1022 stars, a mind-boggling number indeed. What do
we mean by “the observable universe?” How did all these galaxies
form? To answer questions like these, we need to understand how
the universe itself evolves, a subject to which we now turn.
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14
THE EXPANSION OF

THE UNIVERSE
MICHAEL A. STRAUSS

In astronomy, we have two basic strategies for learning about the
nature of objects in the sky. One is by taking pictures of them and
measuring their sizes and brightnesses. The other is by measuring
their spectra. We have seen that the spectra of stars allow us to
infer their surface temperatures and elemental makeup. Using this,
and our understanding of the HR diagram, we have been able to
determine their sizes, masses, and states of evolution.

What can the spectra of galaxies teach us about their physical
nature? Astronomers started measuring the spectra of galaxies
about 100 years ago, around 1915. Galaxies are faint, and the
telescopes back then were smaller, and the instruments far less
sensitive, than those we have today. So measuring a spectrum of a
galaxy required exposures many hours long. But these first spectra



292

showed absorption lines just like those seen in stars (in particular, G
and K stars), which immediately told the astronomers that galaxies
are made of stars. Edwin Hubble came to the same conclusion when
he resolved individual stars in his detailed photographic images of
the Andromeda nebula a decade later (as described in chapter 13).
The spectra of galaxies were refreshingly familiar to those
astronomers accustomed to studying the spectra of stars. However,
they quickly noticed a significant difference. The absorption lines,
from such elements as calcium, magnesium, and sodium, were at
wavelengths somewhat different from those seen in stars. Typically,
all the spectral lines from an individual galaxy were shifted
systematically to the red. We call this phenomenon the redshift.

We can understand how the redshift works by simply standing on
a busy street corner and listening to a motorcycle drive by. You will
hear a high-pitched whine as it comes toward you. Then as it
reaches you and begins to travel away, the pitch of the engine’s roar
drops noticeably as it zips past you. The whole thing sounds like
“Neeeeyaoooowwww!”

The sound we hear from the motorcycle is a pressure wave in the
air, which (like light) has a certain wavelength and frequency; the
higher the frequency is (and the shorter the wavelength), the higher
will be the pitch your ear perceives. As the approaching motorcycle
emits a succession of wave crests, it is moving closer and closer,
crowding the successive wave crests together and giving a higher
pitch. Conversely, the waves that reach you as the motorcycle is
moving away from you are stretched out by the motion and thus
have a lower pitch. This effect, first described by the Austrian
Christian Doppler in 1842, works for light waves as well as sound
waves: the motion of a distant star or galaxy will imprint itself as a
systematic shift in the wavelengths of features in its spectrum. Thus
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we interpret the redshifts of galaxies as resulting from the Doppler
effect: the galaxies are moving away from us. The fractional change
in the wavelength of a wave emitted by an object moving at some
speed is equal the object’s speed, divided by the speed of sound (if
we’re talking about sound waves) or the speed of light (if we’re
measuring the light from some object). The speed of sound in air
here on Earth is roughly 1,200 kilometers per hour, and a fast
motorcycle can easily travel a tenth that speed. The corresponding
change in pitch as the motorcycle passes you (from a velocity of
10% of the speed of sound approaching you to a velocity of 10% of
the speed of sound receding from you) is about 20%—quite
noticeable, equivalent to a musical interval of a minor third.

The wavelength of light is related to its color, and an object going
away, with its light shifted to longer wavelengths, will be redder. The
effect would be perceptible (at least to your naked eye) only for
speeds that are an appreciable fraction of the speed of light. The
motorcycle is traveling at a tiny fraction of the speed of light, which
is why you don’t notice the color of the motorcycle changing from
blue to red as it zips by you. We can’t watch stars or galaxies whiz
past us at high speed, but they have specific spectral features,
absorption lines corresponding to their elemental makeup, whose
wavelengths we know accurately from laboratory measurements
here on Earth. We can measure the wavelengths of the same
features in a given star or galaxy; the difference between the
wavelengths from these elements seen on Earth and in the star or
galaxy, interpreted as a Doppler shift, tells us how fast that star or
galaxy is moving relative to us.

By 1915, Vesto Slipher, working at the Lowell Observatory (where
Pluto was later discovered) had measured the Doppler shifts of 15
galaxies. Andromeda and two other galaxies were blue shifted,
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showing these galaxies were moving toward us, but all the rest were
redshifted and thus moving away from us. We define the redshift z
to be the quantity (λobserved – λlab)/ λlab, where λlab is the wavelength
of the emission or absorption line of an element in the lab on Earth,
and λobserved is the wavelength observed for that element’s line in the
galaxy spectrum. The redshift z of a nearby galaxy is related to its
recessional velocity v by the formula: z ≈ v/c. Thus, a galaxy with a
recessional velocity of 1% of the speed of light will have a redshift of
z = 0.01 and will have the wavelengths of all its spectral lines shifted
to longer wavelengths by 1%. The astronomical community has now
measured the spectra of more than two million galaxies; with only a
handful of exceptions like Andromeda, all of them show a redshift.
We thus conclude that essentially all galaxies in the universe are
moving away from the Milky Way. I once saw a silly cartoon showing
a mad scientist at the telescope, waving his arms in the air, saying,
“The galaxies are fleeing because they hate us!” That’s not the
correct explanation, but it is remarkable that we seem to be in a
special position, at the center of the motion of all the galaxies.
What’s really going on? It was Hubble who again made the critical
measurements, in the late 1920s and early 1930s, that led to our
modern understanding of these redshifts.

After measuring the distance to the Andromeda nebula using
Cepheid variable stars, he continued this effort with other galaxies,
using a variety of estimates to determine their distances. This gets
increasingly difficult for more distant galaxies; it is harder and harder
to distinguish individual stars the more distant a galaxy is. His
measurements were crude by modern standards, but by the late
1920s, he had rough measurements of the distances of a number of
galaxies, for which the spectra—and thus the redshift and inferred
speed—had also been measured. He then made a simple plot,
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comparing the distances of galaxies to their speeds. What he saw
was a trend: the more distant the galaxy, the higher the speed.
Indeed, despite the substantial measurement errors, he was able to
conclude that speed v and distance d appeared to be proportional to
one another:

v = H0d.

This proportionality between speed and distance is now known as
Hubble’s law, and the constant of proportionality H0 (“H naught”) is
now called the Hubble constant in his honor. The Hubble constant is
indeed constant throughout the universe at any given point in time,
but as we’ll see later, it does change with cosmic epoch. The
quantity H0 refers to the value of the Hubble constant at present.

In retrospect, it is remarkable that Hubble was able to infer the
proportionality between redshift and distance, given the rather poor
quality of his data (remember that his measurement of the distance
to the Andromeda galaxy was too small by a factor of 2.5).
Telescopes and techniques have gotten much better since 1929.
Indeed, one of the key projects the Hubble Space Telescope was
designed to do was to make accurate measurements of the
distances of galaxies, using, among other techniques, the
measurement of Cepheid variable stars, just as Hubble did. These
measurements have demonstrated that Hubble was right, and galaxy
redshifts and distances are indeed accurately proportional. It is often
true that groundbreaking discoveries are made from poor data at the
leading edge of what is possible with the technology of the time.
Hubble’s first plot only included galaxies out to a velocity v of about
1,000 km/sec, corresponding to a modern distance of about 50
million light-years. By 1931, Hubble and his colleague Milton
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Humason had extended the plot to include galaxies receding at
20,000 km/sec. That really cinched the case.

Is it really true that the Milky Way galaxy occupies a special
position in the universe, a point away from which all other galaxies
are moving? Such a notion would go against a recurring theme we
have encountered, sometimes termed the Copernican Principle: that
Earth is not in a special place in the universe. Ptolemy and the
ancients put Earth at the center of the universe, but Copernicus
demonstrated that Earth orbits the Sun. We then learned that the
Sun is an ordinary main-sequence star, and although Kapteyn first
thought that the Sun lay at a special place near the center of the
Milky Way, Shapley’s more accurate work demonstrated that the Sun
lies about halfway out from the center. The measurements of
redshifts, at first glance, seem to put the Milky Way at a special
place relative to the other galaxies—at the center of the expansion.
But that is not the case.
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FIGURE 14.1. Galaxies in an expanding line, illustrating that no galaxy is at the
center of an expanding universe. Four galaxies are shown across the top; the
second galaxy is a representation of the Milky Way. They are separated by 100
million light-years (Mly) each. Because of Hubble’s Law, they are moving apart
from one another as the line expands; the first set of three arrows shows the
relative speeds, as seen from the perspective of Galaxy 1. Because motions are
relative, an astronomer in the Milky Way thinks she is at rest and the other three
galaxies are moving away from her at speeds proportional to their distances (next
set of arrows). The same is true from the perspective of Galaxy 3; all observers
separately conclude that they are at rest, and all galaxies are moving away from
them at speeds following Hubble’s Law. Photo credit: Michael Strauss, Milky Way
(schematic artist’s conception from NASA); other galaxy images (courtesy Sloan
Digital Sky Survey and Robert Lupton)

Consider four galaxies equally spaced along a line: Galaxy 1 is on
the left, next comes the Milky Way at a distance of 100 million light-
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years, with Galaxy 3 at a distance of 100 million light-years farther
on, and Galaxy 4 another 100 million light-years farther still (i.e., 300
million light-years away from Galaxy 1). Hubble’s law states that, as
seen by Galaxy 1, the Milky Way is receding at a velocity of about
2,000 km/sec (see the first set of arrows in figure 14.1). Galaxy 3
(twice as far away from Galaxy 1 as the Milky Way) is receding from
Galaxy 1 at a velocity of 4,000 km/sec—twice as fast, and Galaxy 4,
three times as far away, is receding from Galaxy 1 at 6,000 km/sec.
How does it look to us on the Milky Way? That is shown in the
second set of arrows. We are separating from Galaxy 1 at
2,000 km/sec, but we measure motions relative to our frame of
reference, and so we see Galaxy 1 moving away from us, to the left,
at 2,000 km/sec. We see Galaxy 3 moving away from us at 2,000
km/sec in the opposite direction, to the right. The two galaxies are
equidistant from us and are moving away from us at equal speeds.
Galaxy 4 is moving away from us at a relative velocity of 4,000
km/ sec. It’s twice as far from us, and it is moving away from us at
twice the speed. We see all the galaxies fleeing from us, and the
farther away they are, the faster they are fleeing—our observations
also fit Hubble’s law.

Now take the perspective of an alien on a planet in Galaxy 3. All
that counts in the Doppler shift is the relative speed of galaxies.
From the alien’s perspective, she sees the Milky Way, at a distance of
100 million light-years, moving away (toward the left) at a speed of
2,000 km/sec. Galaxy 4, at a distance of 100 million light-years in
the other direction, is moving away from her (in the other direction)
at a relative speed of 2,000 km/sec. Finally, Galaxy 1 is moving away
from her at a relative speed of 4,000 km/sec. That alien sees all the
galaxies moving away from her, and concludes that she sits at the
center of the motion. The alien thinks she is at rest, and all the
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galaxies are fleeing from her, just as we concluded here on the Milky
Way that we were at rest and all the galaxies were fleeing from us.
We and the alien both conclude that speed is proportional to
distance, and neither the Milky Way nor Galaxy 3 is in a special
location.

Hubble’s Law really tells us two things. First, the distance
between any two galaxies is increasing: all galaxies are moving apart
from one another. Hubble discovered that the universe is expanding!
Second, there is no single galaxy that is uniquely at the center of the
expansion. Sitting on any single galaxy, we come to the conclusion
that all the other galaxies are moving away from us. It is like the
galaxies are beads attached to a stretching rubber band, with all the
beads moving away from each other. To fully conclude that there is
no center to the expansion, we really need one more ingredient: the
confidence that there is no edge to the distribution of galaxies. Rich
will return to this topic in all its nuances in chapter 22, when he
discusses Einstein’s theory of general relativity as applied to
cosmology.

The Milky Way is about 100,000 light-years across but is only one
of 100 billion (1011) galaxies in the observable universe, each with of
order 100 billion stars. Andromeda, the nearest big galaxy, is at a
distance of 2.5 million light-years from the Milky Way; most galaxies
are much farther away still, with distances measured in billions of
light-years.

Edwin Hubble discovered that galaxies are moving apart from
one another with speeds proportional to the distances separating
them; this speed can be an appreciable fraction of the speed of light
for a distant galaxy. From this, we are able to conclude that the
universe as a whole is expanding. This was truly one of the great
scientific discoveries of the twentieth century, on a par with the
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discovery of the structure of DNA and its role in transmitting the
genetic code or Einstein’s development of his theories of relativity.

Hubble’s law gives us an easy method for measuring the
distances to galaxies. Given the proportionality between the redshift
and distance of a galaxy, a measurement of a galaxy’s redshift (easy
to obtain if you can measure its spectrum) directly leads to an
estimate of its distance (which is otherwise hard to measure). This
works fine, as long as you know the proportionality constant H0

relating the two. To determine its value, you must first accurately
measure the distances to a sample of galaxies in an independent
way.

As we have seen before, measuring the distance to an
astronomical object is an essential step in understanding it. Knowing
its distance, we can determine many key quantities about an object,
including its luminosity and size. Much of the story of astronomy is
therefore centered on the sundry clever means scientists have
developed for measuring distance. The measurement of the AU (the
distance between Earth and the Sun) in physical units (i.e., meters)
was one of the preeminent scientific problems in the eighteenth and
nineteenth centuries, finally properly solved with observations of
Venus transiting across the face of the Sun, and Mars passing near
distant stars, as seen from different locations on Earth (see chapter
2). This parallax effect allowed the distances to Venus and Mars, and
thus the AU, to be determined by triangulation. The AU sets the
distance scale for the entire solar system and also allows us to use
the parallax effect due to Earth’s orbit around the Sun to determine
distances to nearby stars. For stars that are too distant to show a
measurable parallax—beyond a few hundred light-years 1—we use
the inverse-square law relating a star’s intrinsic luminosity to its
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observed brightness in the sky. The fainter an object of known
luminosity appears in the sky, the farther away it is.

The tricky part of this is knowing the luminosity of your object.
We have talked about Cepheid variable stars, which are an example
of a standard candle, an object whose true luminosity can be
determined, allowing the inverse-square law to be applied to infer
distances. A good standard candle must

1. be luminous enough to be seen at large distances;
2. be readily identifiable and distinguishable from other objects;

and
3. have comparable examples close by, so that its absolute

luminosity can be calibrated (e.g., by the parallax effect or
other methods).

Cepheid variable stars satisfy the first two of these requirements;
they are very luminous, and their variability allows them to be
identified in a dense star field. However, few Cepheid variables are
close enough to have accurately measured parallaxes, which has led
to controversies about their true luminosities. Indeed, it was a
miscalibration of the distance to Henrietta Leavitt’s Cepheid
variables, resulting from others misidentifying nearby counterparts,
that caused Hubble to underestimate the distance to the Andromeda
galaxy. The closest Cepheid variable star in the sky is Polaris, the
North Star, at a distance of about 400 light-years.

We have seen that stars on the main sequence show a direct
relationship between temperature and luminosity. Thus if we can
measure the temperature of a star (e.g., from its spectrum), we can
make a good estimate of its luminosity; then using its apparent
brightness, we can measure its distance. This standard candle has
been fairly well calibrated from measurements of nearby stars by
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parallax, and it can be used on more distant stars—stars so distant
that their parallax is too small to measure. Only the most luminous
stars can be seen at large distances, but these very luminous stars
are also rare, and therefore, few of them are close enough to allow
their parallax to be measured.

This basic approach of using the main sequence to define
standard candles can be done for a whole group of stars instead of
one star at a time. For example, all the stars in a globular cluster are
effectively at the same distance. Therefore if we compare the main
sequence of the stars in a globular cluster today with the (calibrated)
main sequence of nearby stars, we can determine the distance to
the cluster directly. In doing so, we can find the distance to the
relatively rare stars in the cluster for which there are no near-
enough examples available to measure parallax.

Like stars, galaxies come in a large range of luminosities.
Something roughly analogous to a main sequence seems to exist for
spiral galaxies, in which there is a correlation between the speed at
which the galaxy rotates (measurable from its spectrum by the
Doppler effect) and its luminosity. We can calibrate this rotation–
luminosity relation for nearby spirals. Then we can use
measurements of the rotation of more distant spirals to estimate
their intrinsic luminosities, and thus (given additional measurement
of their brightnesses), we can determine their distances.

This series of steps—whereby measurements of the distance to
one type of object is used to infer the distance to another, more
luminous but rarer type of object, which can in turn be used to
measure objects at greater distances still—is called the cosmic
distance ladder. If this ladder is starting to sound a little rickety, it is
indeed, and the uncertainties multiply as we move out to larger
distances. Thus the determination of the Hubble constant H0,
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relating the redshift and distance of galaxies, has been quite
controversial.

Hubble’s law, v = H0d, implies that the Hubble constant H0 has
units of a velocity v moving away from us (usually measured in
kilometers per second) divided by a distance d, measured in
megaparsecs (Mpcs; i.e., millions of parsecs). Hubble’s estimate of
the Hubble constant was about 500 (km/sec)/Mpc (too big, as we’ve
seen, because of his underestimate of the distance to the
Andromeda galaxy, due to the miscalibration of Cepheids by others).
Hubble passed away in 1953, soon after the great 200-inch (5-
meter) diameter telescope at Palomar Mountain near San Diego was
completed. His former assistant Allan Sandage took over his program
of determining the distances to galaxies.

Over the following decades, Sandage and his collaborators used
the Palomar 200-inch telescope and other telescopes around the
world to make tremendous advances in our understanding of
galaxies. By the early 1970s, Sandage really only had one important
rival in the determination of the distances to galaxies and, therefore,
the Hubble constant: a University of Texas astronomer named
Gérard de Vaucouleurs. In the 1970s, the groups headed by
Sandage and de Vaucouleurs each wrote a monumental series of
papers outlining their “steps to the Hubble Constant.” Sandage’s
answer was about 50 (km/sec)/Mpc (a full factor of 10 smaller than
Hubble’s original estimate), whereas de Vaucouleurs’ estimate was
about 100 (km/sec)/Mpc. They differed on every detail and step of
the cosmic distance ladder. Everyone in the astronomical community
cared deeply about the result, because the value of the Hubble
constant sets the scale for our universe. The redshift of a galaxy is
straightforward to measure from its spectrum; if we also know the
Hubble Constant, we can translate that redshift into a distance.
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Finally, in the early 1980s, various younger astronomers dared to
enter the fray, with the introduction of new kinds of standard
candles and improved observational techniques. The Hubble Space
Telescope was designed in part to address this question: free from
atmospheric interference, its superior resolving power allows it to
identify and accurately measure the properties of Cepheid variable
stars in galaxies 30 to 40 million light-years away. A team led by
Wendy Freedman (who was for many years director of the Carnegie
Observatories in Pasadena, where Sandage worked) carried out an
extensive observing campaign with the Hubble Space Telescope.
They published their results in 2001, finding H0 = 72 ± 8
(km/sec)/Mpc, a value almost exactly halfway between the Sandage
and de Vaucouleurs results. Interestingly, Rich Gott and his
colleagues in 2001 made an estimate of the Hubble constant by
combining all published measurements of its value in papers up to
that time (which had used a wide variety of methods) and taking the
median, or middle, value: 67 (km/sec)/Mpc. The median is often a
surprisingly good indicator, being less influenced by errant values
than a straight average. The best estimate today, more than a
decade later—using measurements of the cosmic microwave
background (CMB) by the Planck satellite—is 67 ± 1 (km/sec)/Mpc.
As we’ll discuss in chapter 23, this value has been confirmed by an
measurement of 67.3 ± 1.1 (km/sec)/Mpc by the Sloan Digital Sky
Survey team combining results from supernovae, galaxy clustering,
and the CMB.

Allan Sandage passed away in 2010 at the age of 84, one of the
giants of our field. In his last paper on the subject in 2007, he said
that the Hubble constant probably lay in the range from 53 to 70
(km/sec)/Mpc; thus, he was willing to countenance a value as high
as we measure today.
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With the value of the Hubble constant now nailed down, we can
return to exploring the ramifications of Hubble’s law and the
expansion of the universe.

You can picture the universe as an enormous loaf of raisin bread
rising in the oven. The galaxies are the raisins, and the dough is the
space between them. As the bread rises (as the dough expands),
each raisin moves farther apart from every other raisin, and so from
the standpoint of each raisin, all the other raisins are receding from
it. Therefore each raisin (galaxy) could (erroneously) conclude that it
is at the center of the raisin bread (the universe). Furthermore, a
raisin that was twice as far away from the first raisin would be
receding twice as fast, because there would be twice as much
expanding dough in between. The raisin bread universe follows
Hubble’s law.

This analogy is not perfect. Whereas our raisin bread has a well-
defined center, which we can locate because it has a crust, the real
universe appears (as far as we can measure) to be infinite in extent,
with no edge that would allow us to define a center. We’ll return to
the question of the shape or geometry of the universe in chapter 22.

Hubble’s law tells us that galaxies in general are moving apart
from one another, leading to the conclusion that the universe is
expanding. Does this mean that the individual galaxies are
expanding, with the stars moving apart from one another? Is the
solar system expanding? The Sun? Our very bodies? Those of us
trying to lose weight may say yes to the last of these, but in fact, the
Hubble expansion of the universe holds only on the scale of the
distances between galaxies. Galaxies, like the raisins, don’t
themselves expand, but rather it’s the space between the raisins
that’s expanding. Objects held together by gravity or other forces,
including individual galaxies, individual stars and planets, and even
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ourselves, are not expanding. In fact, even the Milky Way and the
Andromeda galaxies are gravitationally bound to each other, and
therefore falling together, not moving apart. The Andromeda galaxy
is thus one of the handful of galaxies that exhibit a blueshift.

We’ve already mentioned that the Milky Way and Andromeda
galaxies will collide in roughly 4 billion years (before our own Sun
exhausts the hydrogen in its core and becomes a red giant).
However, the distance between individual stars in each galaxy is so
vast compared to the stars’ sizes, that the two galaxies will pass
through each other with essentially no collisions among stars. Thus
Hollywood is unlikely to make a blockbuster disaster flick called
Galaxies in Collision—well, actually, they might; it would not be the
first time that a film played havoc with scientific fact for dramatic
effect!

If the universe is expanding now, and the space between the
galaxies is growing with time, then the galaxies were closer together
in the past. Consider a galaxy that lies at a distance d away from us.
It is moving away from us with a speed, given by Hubble’s law, of
H0d. Crudely assuming that this speed remains constant with time,
we can ask, how long does it take this galaxy to travel the distance
d? Equivalently, how long ago was that galaxy right here on top of
us? If a city is 500 miles away, and someone comes to visit me from
that city driving at 50 miles per hour, the time it will take him to
traverse that distance is just the distance divided by the velocity:
500 miles/50 mph = 10 hours. In our case, we want to know how
long ago the galaxy was on top of us. That length of time t in the
past is equal to the distance the galaxy traveled d divided by its
velocity v (which is equal to H0d by Hubble’s law):

t = d/v = d/(H0d) = 1/H0.
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This seems like a simple result, and indeed it is. But it has quite a
bit to tell us. Notice that the time t does not depend on the distance
d to that galaxy. Thus we would find the same time t in the past at
which any galaxy would have been on top of us. It seems as if the
galaxies were all together at some single time in the past. Before
exploring that thought any further, let us keep in mind that this still
doesn’t mean that we are at the center of the expansion; we could
have gone through the same argument but centered our calculation
on any other galaxy and obtained the same result. We are led to
conclude that there was a time in the universe when all matter in
the universe was compressed together. All the “raisins” were
compacted together. And we know when that time was! It is a time
1/H0 ago. This is another reason people care so deeply about the
value of the Hubble constant. It tells us the age of the universe.

Let’s do the calculation. The best current estimate of the Hubble
constant from the Planck satellite team is 67 (km/sec)/Mpc, so its
inverse 1/H0 is (1/67) sec ⋅ Mpc/km. A megaparsec is equal to 3.086
× 1019 kilometers, so substituting that number for Mpc/km and
dividing by 67, we find that 1/H0 is 4.6 × 1017 seconds. Converting
from seconds to years, that time when all the galaxies were on top
of each other was roughly 14.6 billion years ago.

We refer to this time as the Big Bang, a term coined by Fred
Hoyle in the late 1940s. Even though Hoyle was a lifelong opponent
of the Big Bang model and went to his grave convinced that the idea
was wrong, the term has stuck ever since. In 1994, Carl Sagan,
science journalist Timothy Ferris, and television broadcaster Hugh
Downs felt, like Calvin (of comic strip fame; figure 14.2), that such
an important concept, core to our modern understanding of
cosmology, deserved a more evocative name than “Big Bang.” They
held an international competition, asking people to suggest
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alternative names. They received more than 13,000 suggestions,
sifted through them all, and then completely backed down, deciding,
after considering the alternatives, that “Big Bang” was good enough
after all.

FIGURE 14.2. The “Horrendous Space Kablooie,” Calvin and Hobbes cartoon.
Photo credit: CALVIN AND HOBBES © 1992 Watterson. Reprinted with permission
of UNIVERSAL UCLICK. All rights reserved.

Hubble’s law has led us to the conclusion that at a specific time,
about 14.6 billion years ago, all the universe was crushed together;
it has been expanding ever since. Our calculation of the time since
the Big Bang was crude, as we assumed that each galaxy moves at
a constant velocity, but the modern value based on a more
sophisticated calculation is close, about 13.8 billion years. Does this
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estimate for the age of the universe (for this is what we’re really
talking about) make sense? We know the age of the solar system,
mostly from measurements of radioactivity in rocks from the Moon
and meteorites; it is about 4.6 billion years. This is in the same
ballpark as the expansion age of the universe, although comfortably
smaller. The Sun and the solar system have been enriched in heavy
elements formed in earlier supernovae, so we would not expect the
Sun to be among the earliest stars formed. We have also described
how we can use the position of the turnoff of the main sequence in
the HR diagram of globular clusters to determine their age: the
oldest globular clusters are between 12 and 13 billion years old.

It is absolutely amazing that these three different, and
completely independent, ways of estimating the age of the universe
(and the oldest objects in it) are consistent with one another! We
should marvel that these estimates agree with one another to within
a factor of three; that is a great triumph for our fundamental ideas
of how the universe is put together. That they are all in the same
ballpark (and that the oldest objects we know about in the universe
have an age less than the time since the Big Bang) gives us real
confidence that our basic physical ideas are correct.

Let us now imagine what the universe was like in the past.
Because the universe is expanding, its density is decreasing with
time, a given amount of mass occupying a larger volume at later
times. So at earlier times it was denser. Just as for stars, the denser
you make things, the hotter they tend to be, so in the past, the
universe was much hotter than it is now (in chapter 15 we’ll talk
about what we mean by the temperature of the universe; it turns
out that this concept is quite well defined). Indeed, using the
simplest extrapolations, there appears to be a moment, about 13.8
billion years ago, when the entire observable universe would have
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been infinitely hot and infinitely dense, and from that time to the
present, it has been expanding and cooling. We cannot trace back
any further than 13.8 billion years ago—this is our definition of the
birth of the universe. The expansion started with a Big Bang and is
still observed in the universe today in the form of Hubble’s law.

At the time of the Big Bang, then, the universe appears to have
been infinitely dense and infinitely hot. Was it also infinitely small?
This is where things get tricky. The answer is: not really, in the sense
that we would usually use the word “small” in English. Let us
assume that the universe today is infinitely large. “Wait a minute!”
you might protest. “You’ve been telling us throughout this book that
the observable Universe is finite, with a radius of a few tens of
billions of light-years!’’ Indeed. We’ll make a distinction between the
universe as a whole, and the observable universe, the part we can
see today; it is the latter that has a finite size. The universe is
expanding, and therefore decreasing in density, but if it is infinite in
size today, shrinking it in the past still leaves it infinite in size, and
that was true all the way back to the Big Bang. In the beginning,
that makes the universe infinite in extent, infinitely dense, and
infinitely hot. It had no center, and certainly no edge outside of
which one could look at the universe as a whole.

This may all sound like semantics, but it is the simplest way to
think about our modern understanding of the early universe. What
we are doing here is putting into words the results one finds when
solving the appropriate equations of Einstein’s theory of general
relativity, as we’ll explore in later chapters. The Big Bang was not an
explosion, as it is sometimes erroneously depicted, of something
very small and dense expanding into empty space. It is not like a
bomb. Because the universe has no edge, there is no empty space
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“out there” for it to expand into. It is the space itself that is
expanding.

If there is no such thing as an outer edge to the universe, can
we ask what existed before the Big Bang? Unfortunately, our
equations do not let us do so. Yes, it is a reasonable question, but
no, general relativity doesn’t have an answer for you. The equations
of general relativity predict an infinite density at the moment of the
Big Bang. In science, when your equations yield a result of infinity,
you know that your theory is incomplete; there is more physics
going on than the equations describe.

Thus the equations of general relativity break down at the
moment of the Big Bang, which is why we can’t extend them to a
time before the Big Bang. “What happened before the Big Bang?” is
a question that cosmologists are asked all the time, and
unfortunately, they often respond by saying that this is a
meaningless question, implying that the questioner is silly for asking.
They are not silly for asking: that the equations break down at the
Big Bang is a sign of a problem with the theory, not the question!
We return to these questions in chapters 22 and 23, when we ask
about the overall geometry of the universe and what might have
started the Big Bang itself.

In any case, because of this ignorance, cosmologists consider
time to start at the Big Bang. It is our own creation myth, but as
we’ve seen, it is drawn from direct observations of the universe and
our understanding of physics. The universe appears infinite in extent
but has a finite age. This finite age, because of the finite velocity of
light, means that there is only a finite part of the universe that we
can observe. Consider, for example, our situation today, just 13.8
billion years after the Big Bang, sitting in the Milky Way galaxy. The
universe is infinite around us, but we can’t see it all, because light
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travels at a finite speed. Light from the most distant material we can
see now has been traveling toward us for 13.8 billion years, and has
traversed only 13.8 billion light-years in distance through the ever-
expanding space between that material and us. But we are seeing
that stuff as it was in the past—where it used to be. Where is it
now? The expansion of the universe in the meantime has carried
that material (now formed into galaxies) out to a distance of 45
billion light-years from us by now. This represents the boundary of
the present-day observable universe. Beyond those galaxies lie
other, more distant, galaxies from which we have never received
photons. As we’ll see in future chapters, the space between them
and us is simply expanding so fast that light from them has not had
time to traverse it. So beyond the edge of the observable universe,
there is much more universe out there, indeed, an infinite amount, if
we are to believe our current measurements of the geometry of the
observable universe and our cosmological models. You might
consider this the greatest extrapolation in science: we carry out
observations within our finite observable universe with a current
radius of “only” 45 billion light-years, and extrapolate to an infinite
universe!
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15
THE EARLY UNIVERSE

MICHAEL A. STRAUSS

The early universe just after the Big Bang was very hot and dense,
but it was expanding and cooling. Our equations allow us to do
detailed calculations of the expected state of matter in the early
universe; it is a fertile area for physicists, because it involves the
calculation of the properties of matter at extremely high
temperatures and densities. Moreover, nuclear reactions in the early
universe leave telltale traces in the chemical abundances of the
elements we see in the universe today. We’ll see that these
predictions of light-element abundances from Big Bang physics
accord beautifully with observations, giving us confidence that we
actually understand what happened in the first moments after the
Big Bang. Let’s start the story about 1 second after the Big Bang.
The universe was tremendously hot, about 1010 K (10 billion
kelvins!) and terribly dense by human standards, about 450,000
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times the density of water. Galaxies, stars, and planets didn’t exist
yet. Indeed, it was much too hot for atoms or molecules, or even
atomic nuclei to form. The ordinary material of the universe at this
point consisted of electrons, positrons, protons, neutrons, neutrinos,
and, of course, lots of blackbody radiation (i.e., photons). And if, as
is currently thought, dark matter consists of as-yet undiscovered
elementary particles, we would expect those particles to also exist in
large numbers in the universe at this time.

But two and a half minutes later, the universe has cooled down
to a temperature of “only” a billion kelvins; at this time, the photons
have a blackbody spectrum peaking in gamma rays. A billion kelvins
is cool enough to permit nuclear fusion reactions in which neutrons
and protons are able to stick together. In the Sun, we found that
under high temperatures and densities, protons fuse together to
make helium nuclei (see chapter 7). In the center of stars like the
Sun, it takes billions of years to turn 10% of the hydrogen into
helium. The nuclear reactions taking place in the early universe go
much faster, because free neutrons as well as protons are present.
Proton–proton collisions require high energy, because both protons
are positively charged and they repel each other, making actual
collisions infrequent. Neutrons are electrically neutral (and thus are
not repelled by protons), so neutron–proton collisions occur more
often. Fusion can occur by adding neutrons to protons, on the way
to producing helium. This allows the slow first steps of the solar
fusion process (proton–proton collisions) to be skipped.

Protons and neutrons can transmute into each other. A neutron
plus a positron can combine to give a proton plus an anti-electron
neutrino, and vice versa. A neutron plus an electron neutrino can
combine to give a proton plus an electron, and vice versa. And a
neutron can decay into a proton by emitting an electron and an anti-
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electron neutrino. At 10 billion kelvins (the temperature when the
Universe is 1 second old), these processes are in balance. Neutrons
are slightly more massive than protons, meaning they take slightly
more energy to make and so there are slightly fewer neutrons than
protons 1 second after the Big Bang. But by the time the universe
cools to a billion kelvins as it continues to expand, this balance
changes so that more neutrons are converted into lighter protons,
yielding seven protons for every neutron. At a temperature of a
mere billion kelvins, less thermal energy is available to make up the
(E = mc2) mass difference between protons and neutrons; neutrons,
therefore, become rarer relative to protons. At this point, the
universe has cooled enough for a neutron and a proton to collide
and stick together to form a deuteron (the nucleus of heavy
hydrogen—deuterium) without the deuteron immediately coming
apart when it collides with the next particle. A deuteron can then
participate in additional nuclear reactions to add an additional
neutron and an additional proton to form a helium nucleus (two
neutrons and two protons). After just a few minutes of nuclear
burning, essentially every neutron is incorporated into a helium
nucleus, and by that time, the universe has cooled and thinned
enough that these nuclear reactions stop.

Let’s calculate how many helium nuclei result. There are two
neutrons in each helium nucleus. With a ratio of one neutron for
every seven protons, those two neutrons are paired with 14 protons.
Two of those protons are also included in the helium nucleus, with
12 protons left over. This predicts that one helium nucleus forms for
every 12 protons (these, of course, are hydrogen nuclei). After these
first few minutes, the universe becomes too cool and thin for further
nuclear reactions to take place. Thus, a significant number of helium
nuclei are made in the Big Bang, along with trace amounts of
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leftover deuterons (the nuclei of deuterium), lithium and beryllium
nuclei (which decay into lithium), and no heavier elements.

This basic calculation was first done by George Gamow and his
student Ralph Alpher in the 1940s. They couldn’t resist the
temptation to add Hans Bethe’s name as a co-author in their famous
Alpher-Bethe-Gamow (“α-β-γ”) paper describing some of their
results. One helium nucleus for every 12 hydrogen nuclei is excellent
agreement with the results, dating back to the work of Cecilia
Payne-Gaposchkin, that the stars are composed of about 90%
hydrogen and 8% helium (see chapter 6). Thus, our predictions for
the conditions in the universe just a few minutes after the Big Bang
have given us a basic explanation of why hydrogen and helium are
the two most abundant elements in the universe, and why they are
found in the proportions we see! This is an astonishing success of
the Big Bang model and gives us a strong justification for
extrapolating the expansion of the universe to a time just a few
minutes after the Big Bang, when temperatures were above a billion
kelvins.

Gamow and Alpher hoped originally to explain the origin of all
the elements from the Big Bang, but their calculations showed that
the nuclear reactions proceeded only through the lightest elements.
All the heavy elements (including the carbon, nitrogen, and oxygen
in our bodies, and the nickel, iron, and silicon, which contribute to
the makeup of Earth) were created later by nuclear processes taking
place in the cores of stars, a process we have described in chapters
7 and 8. Fred Hoyle, a rival of Gamow’s, hoped to demonstrate just
the opposite: that both the heavy and light elements could be
created from hydrogen by nuclear cooking in the cores of stars
without invoking an early hot dense phase in the universe’s history,
and he spent much of his career trying to do so. He developed much
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of our modern understanding of the formation of the heavy elements
in stars. But the quantity of helium that gets made in stars is not
nearly enough to explain the amount that we observe.

The fact that we see some deuterium in the universe today
points to a Big Bang origin. Deuterium (having one proton and one
neutron) is fragile and is destroyed by being fused into helium in the
cores of stars, rather than being manufactured there. Stars can’t
make it. The only way we know how to make it is in the Big Bang,
and calculation of the amount of deuterium created in the first few
minutes after the Big Bang (one deuterium for every 40,000 ordinary
hydrogen nuclei) is in excellent accord with the observed value. The
nuclear burning after the Big Bang suddenly stops when the universe
has thinned out sufficiently, leaving a small residual amount of
deuterium that has not “finished” fusing into helium. The
nonequilibrium nature of the burning, because things are changing
so rapidly in the early universe, is the key to leaving a small residual
amount of deuterium today. Gamow realized this. To Gamow, the
observed cosmic abundance of deuterium was a smoking gun
pointing to the Big Bang.

As the universe expands, space stretches, and the wavelengths
of photons traveling through the cosmos stretch as well; this is just
the redshift phenomenon we’ve already discussed. If space is
expanding and we observe a distant galaxy, we will see photons
from it redshifted, because it is moving away from us, and we can
interpret this effect as a Doppler shift. But we could equally well
interpret this as simply the stretching of space itself, stretching the
distance between us and the distant galaxy, and stretching the
wavelength of the photon traveling from the galaxy to us. Draw a
wave on a thick rubber band and stretch the rubber band; the
wavelength of the wave you have drawn will increase. Both
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interpretations of the redshift are equivalent: we can view the
redshift as a Doppler shift from a distant object that is moving away
because of the expansion of space, or we can interpret the redshift
as the lengthening of the wavelength due to the stretching of space
itself. Photons from the early universe retain their blackbody (Planck)
spectrum, but as their wavelengths lengthen due to the expansion of
space, the temperature of the photons drops. Gamow and his
students, Alpher and Herman, conceived of the universe beginning
with a hot Big Bang and then cooling off with time as it continued to
expand.

Einstein, in thinking about the universe overall around 1917,
hypothesized what we call the cosmological principle: on large
scales, and at any given time, the universe looks more or less the
same from any vantage point. If we step back far enough and look
at large enough scales, the material in the universe should be
smoothly distributed. We have seen one aspect of Einstein’s
hypothesis already—the expansion of the universe looks the same
from the perspective of any given galaxy—from which we inferred
that the universe has no center. In the same way, an infinite plane
has no point one can label the “center,” and the curved surface of a
sphere has no point on its surface that can be labeled its “center,” as
all points on the surface of a sphere are equivalent.

Of course, we look around the universe today, and it looks
anything but smooth! The mass of our solar system is concentrated
into planets and the Sun. Stars are separated by distances vast
relative to their sizes. Stars are gathered into galaxies, which are
separated from one another by distances of millions of light-years,
and galaxies group together in clusters. Einstein’s cosmological
principle suggests that we should step back even further, looking on
scales of hundreds of thousands of galaxies, and we will see the
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universe as approximately uniform. Hubble’s observations showed
that counts of faint galaxies in different directions were the same;
the universe indeed looked uniform in space on the largest scales.

Fred Hoyle took this one step further: not only is the universe
homogeneous in space, more or less the same wherever we look, he
claimed, but also homogeneous in time. If you go back to the past,
it should look the same as it does today, Hoyle figured. The laws of
physics don’t change with time, so why should the universe? If you
take this notion literally, then there can be no beginning or Big Bang
to the universe; the universe has existed forever. Hoyle called this
idea the perfect cosmological principle. Given that the distance
between galaxies is growing with time due to the expansion of the
universe, Hoyle had to hypothesize that new matter was being
created in the space between galaxies, which would eventually form
into new galaxies—a crazy idea, perhaps, but one that he thought
was less crazy than forming the entire universe from a moment of
infinite density and temperature, marking the beginning of time.

Which one of these pictures is right? As we continue to explore
the predictions of the Big Bang model and compare them with what
we observe, we will see that the empirical evidence for the Big Bang
theory, in the form of agreement between its predictions and our
observational data, is very strong indeed.

The first prediction the Big Bang model makes is that the
universe should be expanding, as, of course, we observe. The model
also predicts the age of the universe—13.8 billion years—in accord
with the slightly smaller ages found for the oldest stars in the
universe. This is an unambiguous success of the Big Bang model: if
we had found stars that were a trillion years old, then we would
have been forced to conclude that the Big Bang model couldn’t be
right. Indeed, we’ve been through just such a crisis in the past:
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Hubble’s first estimate of his constant was H0 = 500 (km/sec)/Mpc,
corresponding to a time since the Big Bang (1/H0) of only 2 billion
years. It was clear by the 1930s from radioactive dating of rocks that
Earth is older than that. This age was inconsistent with the Big Bang
model: Earth can’t be older than the universe itself! This
inconsistency was an argument in favor of Hoyle’s model, because in
his model, the universe was infinitely old and ever-expanding, with
new galaxies being formed in intergalactic space all the time. The
discrepancy was resolved in the 1950s and 1960s with much-
improved measurements of the distances to galaxies, greatly
reducing the value of the Hubble constant and making (1/H0)
consistent with the ages of the oldest stars.

We also saw that the Big Bang predicts that there should be 12
hydrogen nuclei for every helium nucleus in the universe, and
40,000 hydrogen nuclei for every deuterium nucleus, exactly as is
observed. It didn’t have to be this way; indeed, before the science of
spectroscopy was fully mature, and Cecilia Payne-Gaposchkin and
others had determined that the Sun is mostly hydrogen, people had
little idea of the relative abundances of elements in the universe.

Let us take stock of the elements a few minutes after the Big
Bang. Essentially all free neutrons have been incorporated into
helium nuclei. Nuclear burning ceases, as the universe is too cool
and too low density at this stage for any additional reactions to take
place. In addition to these helium nuclei, and trace quantities of
deuterium and lithium nuclei, we also have protons, electrons,
neutrinos, and photons—the positrons present earlier have
annihilated with electrons to produce additional photons, leaving
behind just enough electrons to balance the charge of all the
protons. It is very hot and, as we know, hot things emit photons, so
there are plenty of photons around too. As the universe continues to
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cool and drop in density, its makeup does not change for about
380,000 years.

Up to this point, the material of the universe is a plasma (as in
the interiors of stars): the atomic nuclei and the electrons are not
bound together but move independently of one another. If an
electron briefly is captured by a proton, forming an atom of neutral
hydrogen, it will quickly be hit by one of the many high-energy
photons present, kicking the electron free of the proton. Moreover,
because photons interact so strongly with free electrons (i.e., those
not bound up in an atom), a photon can’t travel very far before it
collides with another electron and bounces (scatters is the technical
term) off in a different direction. That is to say, the universe at that
time was opaque; it was a bit like a thick fog in which you can’t see
very far in front of you. This is analogous to what we found in the
interior of stars: the interior of the star is opaque, and energy in the
form of photons generated in the core takes a very long time, of
order a couple of hundred thousand years, to diffuse outward to the
surface.

The story changes drastically when the temperature has dropped
to 3,000 K, at a time about 380,000 years after the Big Bang. At this
point, the photons no longer have enough energy to ionize
hydrogen, and the electrons and protons pair up to make neutral
atoms. Neutral hydrogen does not scatter photons nearly as much as
individual free electrons do, and the universe suddenly becomes
transparent: the fog has lifted. The photons can now travel on
straight trajectories.

This suggests that we, in the present-day universe, should be
able to see those photons, which have been streaming freely toward
us ever since that time when the universe became transparent,
380,000 years after the Big Bang. If the universe has no edge, we
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should expect to be receiving these photons from every direction in
the sky. That is, in every direction we look, there is material at the
appropriate distance such that the photons it emitted 380,000 years
after the Big Bang are just reaching us today.

These photons are emitted by gas at a temperature of 3,000 K,
and thus should have a blackbody spectrum appropriate to that
temperature. Such a blackbody peaks at a wavelength of about 1
micron (10–6 meter). However, we have to take one other important
aspect of the story into account: the universe is expanding! This
3,000 K blackbody radiation is thus redshifted. The universe has
expanded by a factor of about 1,000 from when it was
380,000 years old until today, 13.8 billion years later. The
wavelength of the radiation is stretched by this same factor as the
space expands. Thus the peak wavelength of the thermal radiation
now is 1 millimeter rather than 1 micron. If the peak wavelength has
increased by a factor of 1,000, the temperature has decreased by
that same factor. That means today we should see this thermal
radiation with a temperature of about 3 K coming to us from all
directions in the sky. This radiation comes from a time when the
universe was a mere 380,000 years old, 0.003% of its present age.

In 1948, Alpher and Robert Herman, another of Gamow’s
students, predicted that the universe today should still be filled with
this thermal radiation left over from the Big Bang, and calculated
that by today its temperature should have dropped to about 5 K—
close to the correct value.

But by the 1960s, the Herman and Alpher prediction was largely
forgotten, and Bob Dicke, Jim Peebles, Dave Wilkinson, and Peter
Roll of the Princeton University physics department went through a
similar line of reasoning and came up with the same prediction. They
took this one step further, realizing that blackbody radiation peaking
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at 1 millimeter could actually be detected with radio telescopes and
sensors that Dicke had developed. (That meant they would be
looking for microwaves, short-wavelength radio waves like those
produced in a microwave oven.) They started building a microwave
telescope on the rooftop of a building on the Princeton campus to
see whether they could detect the blackbody radiation from the early
universe that they had theorized must be there, if the Big Bang idea
was correct.

In the end, they got scooped. This was 1964, very early in the
Space Age, and Bell Laboratories was starting to think about the
possibility of using satellites for long-distance communication. Two
Bell Labs scientists, Arno Penzias and Robert Wilson, were
investigating whether microwaves could be used to communicate
using satellites and were trying to characterize emission from the sky
at such wavelengths. They used a large radio telescope at the Bell
Lab campus in Holmdel, New Jersey. To their surprise, they found
microwave radiation coming from every direction in the sky toward
which they pointed the telescope. Once the Princeton folks heard
about this, they realized that Penzias and Wilson had discovered the
cosmic microwave background (CMB) radiation that they had
predicted. Their two papers—the Princeton paper making the
prediction, and the Penzias and Wilson paper, making the discovery
—were published back-to-back in The Astrophysical Journal in May
1965.

With this result, another fundamental prediction of the Big Bang
model was verified observationally. The CMB was emitted throughout
the entire universe when it was 380,000 years old, and thus should
be observable coming from all directions in the sky with the same
intensity. This is exactly what is observed. Indeed, this observation
reminds us that the Big Bang happened everywhere, with no well-
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defined center, and thus the leftover heat radiation from the Big
Bang is coming to us equally from all directions. In 1967, Penzias
and Wilson published a limit on variations in the strength of the
emission over the sky of a few percent. As technology has improved,
the measurements have gotten much better; as we’ll see below, the
emission is actually uniform to an astonishing one part in 105.

Alpher and Herman’s original paper in 1948 predicted that the
temperature of the CMB blackbody spectrum should be about 5 K.
Penzias and Wilson found a temperature of 3.5 K in their original
paper (later refined with more precise measurements to be 2.725 K).
This was astonishingly close to the original Alpher and Herman
estimate. The discovery of the CMB convinced the astronomical
community that the Big Bang model was correct. The unchanging
universe model championed by Fred Hoyle, for example, has no
natural way to explain the CMB, whereas it is an inevitable and
direct prediction of the Big Bang model. This is how science
proceeds. This process of continual testing is how scientists gain
confidence in their ideas. Penzias and Wilson were awarded the
1978 Nobel Prize in Physics for their discovery.

Peebles and Wilkinson were just beginning their scientific careers
in 1965. With the discovery of the CMB, they decided to devote their
careers to cosmology, the study of the universe as a whole. Jim
Peebles became one of the most important theorists working in the
field. Dave Wilkinson made ever more sophisticated measurements
of the CMB, first using radio telescopes here on Earth and eventually
launching satellites to take data from space. (I should mention here
that Wilkinson is my scientific grandfather. My PhD thesis advisor,
Marc Davis, completed his PhD thesis under the aegis of Dave
Wilkinson in 1974.)
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The question Wilkinson wanted to address first was this: is the
spectrum of the CMB really that of a blackbody? Wilkinson was one
of the scientific leaders of the NASA satellite, the Cosmic Background
Explorer (COBE), which was designed to measure the CMB spectrum
to high accuracy. It succeeded spectacularly; the CMB spectrum that
the COBE satellite measured follows the blackbody formula perfectly
within the (very small) error bars. This experiment has been called
the most accurate measurement of a blackbody in nature (figure
15.1).
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FIGURE 15.1. Preliminary cosmic microwave background (CMB) spectrum from
COBE. David Wilkinson showed this spectrum of the CMB from the COBE satellite
in a 1990 talk at Princeton University, and the audience burst into applause. Its
match to the theoretical Planck blackbody curve for thermal radiation is
spectacular. (In the diagram, the Planck blackbody curve [solid line] is plotted on
linear versus linear scales, with the data showing the observational error limits as
little boxes. The Planck blackbody spectra shown in chapters 4 and 5 are on
logarithmic versus logarithmic scales and thus appear a bit different.) Photo credit:
Adapted from collection of J. Richard Gott
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The next big question that Wilkinson tackled was: how uniform is
the CMB—that is, does it have the same intensity (or equivalently,
the same temperature) in all directions? The cosmological principle,
whereby the universe is hypothesized to be smooth on very large
scales, predicts that the CMB should be extremely uniform. Penzias
and Wilson’s initial measurements could put only crude limits (of a
few percent) on just how smooth it was, but by the late 1970s,
Wilkinson and others discovered that the temperature of the CMB
was not exactly the same in all directions, but varied smoothly
across the sky, changing by about 0.006 K from one side of the sky
to another. It quickly became apparent what was causing this
variation. In addition to the relative motions of galaxies due to the
overall expansion of the universe, galaxies can move individually
because of the mutual gravitational attraction between them. In
addition, the Sun is orbiting the center of our galaxy. These motions
combine to give the Sun a velocity of about 300 km/sec relative to
the bulk of the matter in the universe that is giving rise to the CMB.
This causes a Doppler shift of about one part in a thousand (because
300 km/sec is 1/1,000 of the speed of light) in the CMB; the CMB is
slightly blueshifted in the direction of our motion, slightly redshifted
in the opposite direction, and varies smoothly in between—just as
we observe.

We should pause at this moment to reiterate all the ways we are
in motion, despite our perception of sitting still. Earth is rotating
around its axis; at North American latitudes, this corresponds to a
speed of about 270 m/sec. Earth orbits around the Sun at a speed of
30 km/sec. The Sun orbits around the center of the Milky Way at
220 km/sec, and the Milky Way and the Andromeda galaxy are
falling toward each other at about 100 km/sec. Finally, the two
galaxies together are moving at a speed of almost 600 km/sec with
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respect to the mean velocity of all the material in the observable
universe. Add up all these different motions in different directions,
and you get the Sun’s motion of 300 km/sec relative to the CMB. It
is dizzying indeed to envision all this and is an illustration of Galileo’s
dictum, refined in Einstein’s theories of relativity, that it is relative
motions that are important. Without sophisticated astronomical
measurements, we simply perceive ourselves as sitting still.

This Doppler shift induced by our motion with respect to the CMB
gives a smooth deviation from uniformity in the CMB of one part in
one thousand, which has now been observed to high accuracy. So
subtract that effect out. The next question Wilkinson wanted to ask
was whether there are any ripples in the CMB that are intrinsic and
not just a consequence of our motion. If our understanding of the
Big Bang is correct, the answer must be yes. Indeed, the early
universe could not have been exactly smooth, without any deviations
from perfect uniformity. A perfectly uniform universe will expand
uniformly, and no structure will ever form: no galaxies, no stars, no
planets, no humans to look up at the sky and wonder what it all
means. The fact that we live in a Universe with structure, with real
deviations from uniformity—that is, a universe in which we exist—
tells us that the early universe, and thus the CMB, could not have
been perfectly smooth.

How did structure form in the universe? Consider a region in the
early universe in which the density of matter is slightly higher than
in the neighboring regions. The mass associated with that region is
also slightly higher, and thus it has a slightly higher gravitational pull
than the material around it. A random hydrogen atom or particle of
dark matter will be attracted toward that region, thereby increasing
its density at the expense of the regions around it. Material thus falls
into this region, increasing its mass, and in the gravitational tug-of-
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war, it will be even more effective in pulling extra matter toward it.
As time goes on, this process will cause subtle fluctuations in the
density of matter to grow with time—enough in principle to form the
structures we find around us today. Jim Peebles has a wonderfully
succinct way to describe this process of gravitational instability:
“Gravity sucks!” he likes to say.

Given the amount of structure we observe in the universe today,
and given the physics of gravity, how strong should the fluctuations
in the early universe (and thus the observed undulations in the CMB)
be? It’s a tricky calculation: the story is complicated by the fact that
the universe is expanding at the same time matter is trying to clump
because of gravity. You also have to understand all the components
of matter, both dark matter and the ordinary stuff made of atoms.
We mentioned earlier that while the universe was still completely
ionized (before 380,000 years after the Big Bang), photons were
continually scattering off the free electrons in the universe. The
pressure from those photons kept fluctuations in the distribution of
ordinary matter (electrons and protons) from growing under gravity.
If this were the full story, the fluctuations could have been growing
via gravity only since the time the universe became neutral, and the
nonuniformities in the CMB would have to be larger than we
observe.

However, as Jim Peebles realized in the 1980s, dark matter can
explain the discrepancy. Dark matter is dark; that means it does not
interact with photons, and therefore fluctuations in the dark matter
can grow under gravity impervious to the pressure of photons. After
the universe becomes neutral, ordinary matter can fall into the
lumps of dark matter that had already been growing for some time.
So, if there is dark matter, we can start off with fluctuations in the
CMB that are smaller than if there were only ordinary matter
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present. By the 1980s, the limits on the fluctuations in the CMB were
so stringent that models that didn’t invoke dark matter were ruled
out.

So the dark matter we infer from the rotation of galaxies is also
needed to understand the CMB. What is dark matter made of?
Detailed comparison of the abundance of helium and especially
deuterium with the predictions of the processes occurring in the
early universe tell us that the average density of ordinary matter
(i.e., that made from protons, neutrons and electrons) is a mere 4 ×
10–31 grams in each cubic centimeter. That’s equal to one proton in
every four cubic meters! We’re reminded of the truly vast (and
mostly empty) expanses between stars in galaxies, and from one
galaxy to another. But measurements of the motions of galaxies, as
well as the fluctuations in the CMB (which we’re about to describe),
tell us that the total density of matter in the universe is roughly six
times larger. The difference is the dark matter, but we conclude that
dark matter cannot be made of ordinary protons, neutrons, and
electrons. We suspect that dark matter is composed of unseen
elementary particles of a yet-to-be-discovered type, which were
presumably formed in the extreme heat and pressure of the early
universe, just as protons, neutrons, and electrons were. There are a
number of speculations as to what these elementary particles might
be. The theory of supersymmetry predicts that each particle we
observe should have a massive supersymmetric partner: the photino
for the photon, the selectron for the electron, the gravitino for the
graviton, and so forth. The search is on at the Large Hadron Collider
for such particles. If one of them is discovered, it would prove the
theory of supersymmetry. In 1982, Jim Peebles proposed that dark
matter is composed of weakly interacting massive particles (and yes,
astronomers actually call these “WIMPs”) considerably more massive
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than the proton. The lightest supersymmetric partner of a known
particle might just fill the bill. George Blumenthal, Heinz Pagels, and
Joel Primack proposed the gravitino as a candidate in 1982. It has to
be the lightest, because the heavier ones are not stable in the
theory; they decay to something lighter and so don’t stick around.

Another speculation is that dark matter could be made of
elementary particles called axions. The Large Hadron Collider, the
world’s most powerful particle physics experiment, which sits on the
Swiss-French border, may be our best hope for finding and
identifying any of these candidates. But if the mass of the Milky Way
galaxy is mostly dark matter, we expect that there should be dark
matter particles all around us. Dark matter particles should be
passing through your body right now. But again, they are dark,
which means that they don’t interact much with ordinary matter
(except by gravity). However, the supersymmetric or axion models
for dark matter predict that on rare occasions, a particle of dark
matter may interact with an atomic nucleus and cause a reaction
that we could hope to observe. Experiments are underway to look
for such reactions. It’s a difficult game: one such experiment uses
100 kilograms of liquid xenon, looking for the flash of light expected
if a dark matter particle scatters off one of the xenon nuclei. These
experiments are placed in deep mines to minimize confusing
interactions with normal particles. These experiments have not yet
found convincing evidence of dark matter; but experimental limits on
its properties are only now approaching the range the particle
physics models predict. The search for the dark matter particles
takes us to the forefront of particle physics.

Invoking the presence of dark matter, one predicts that the CMB
should be smooth, with fluctuations at the level of one part in
100,000. The instruments on the COBE satellite had been designed
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with the required sensitivity. In 1992, I remember attending a
presentation Dave Wilkinson gave for the Princeton astronomical
community describing the satellite’s measurements. The fluctuations
in the CMB that had to be there (according to our understanding of
growth of structure in a hot Big Bang universe) had finally been
detected by the satellite, at a level of one part in 100,000, just about
the level that Peebles and others had predicted.

At that time, Wilkinson was already thinking about a next-
generation satellite, with instruments capable of measuring these
fluctuations (or anisotropies, in the jargon) with greater precision.
Wilkinson put together a team, including many of the veterans from
the COBE satellite, to build the Microwave Anisotropy Probe (MAP).
MAP was launched in 2001, and mapped the sky for 9 years.

Sadly, Wilkinson was suffering from cancer through this period.
He was able to see the early results from the satellite just before he
passed away in September 2002. In February 2003, the team
published the results from the first year’s data. NASA decided to
rename the satellite after Wilkinson; it was henceforth known as the
Wilkinson Microwave Anisotropy Probe, or WMAP.

Figure 15.2 shows the map of the fluctuations in the microwave
background temperature as found by the WMAP satellite after 9
years of taking data (in 2010). The elliptical shape maps the full
sphere of the sky. The north galactic pole is at the top, the south
galactic pole is at the bottom, and the galactic equator, tracing the
plane of the Milky Way galaxy, is the line passing horizontally across
the middle of the map. Emission from the interstellar medium in the
Milky Way, as well as the one-part-in-a-thousand deviation due to
our motion relative to the CMB, have been subtracted.
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FIGURE 15.2. WMAP satellite map of the cosmic microwave background. based
on 9 years of data, 2010. This is a map of the entire sky, in the same projection as
figure 11.1 and figure 12.2. Microwave emission from the Milky Way itself has
been subtracted off as well as the Doppler shift due to Earth’s peculiar motion
relative to the cosmic microwave background. Red denotes slightly above average
temperature; blue, slightly below average temperature; and green, intermediate
temperature. Photo credit: WMAP satellite, NASA

This is really a baby picture of the universe, our direct view of it
when it was a tiny fraction of its present age. These photons have
been traveling to us for all but 380,000 years of the 13.8-billion-year
age of the universe. The contrast on this map has been cranked up
so that the deepest reds and blues correspond to fluctuations of
several times ±0.001%; the more typical values are ±0.001% (i.e.,
one part in 100,000).

Figure 15.3 shows the measured strength of these fluctuations as
a function of the angular scale (note scale at the bottom). These
measurements come from a successor satellite, called Planck,
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launched by the European Space Agency, as well as a variety of
other telescopes on the ground.

FIGURE 15.3. Strength of cosmic microwave background fluctuations as a
function of angular scale (red dots) compared with theory (green curve), from the
Planck Satellite Team 2013. The strength (power) in the variations of the
temperature of the cosmic microwave background is plotted vertically, as a
function of the scale of the fluctuations in degrees. The units on the vertical axis
are micro-Kelvin squared, representing fluctuations from the uniform temperature
of 2.7325 K of about one part in 100,000. The oscillations in the curve are due to
sound waves traveling through the universe until the time of recombination. The
solid curve going through the data points is the predicted curve given our model
for the Big Bang, including the effects of dark matter, dark energy, and inflation
(about which we learn much more in chapter 23); the essentially perfect
agreement with the observations is stunning confirmation that the Big Bang model
is correct. Data from NASA’s WMAP satellite earlier resulted in much the same
conclusion. Credit: Courtesy ESA and the Planck Collaboration

There is a peak at an angular scale of 1°, corresponding to the
typical size of the “bumps” you see in the WMAP image. The graph
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tells us, for example, that there are smaller variations from one 18°-
wide patch to another than from one 1°-wide patch to another.
Where no error bars are apparent, the observational errors are
smaller than the size of the red dots.

The smooth green curve going through the points is the result of
a theoretical calculation based on Big Bang theory, including the
effects of dark matter, dark energy, and inflation (about which we
learn much more in chapter 23). At large angular scales, the green
line broadens to encompass the theoretically expected scatter in the
predicted results. The agreement between the two is astonishing:
the observations fall along the green theoretical curve within the
observed errors. The Big Bang model has racked up another
success: it predicts the detailed nature of the extremely subtle
fluctuations seen in the CMB.

After recombination, material starts gathering into ever-denser
lumps to make the first stars and galaxies. But given the angular size
of structures we see in the CMB, we predict that there should be
substantial structure in the universe on larger scales than just
galaxies, which are a mere 100,000 light-years across. That is, the
galaxies should not be randomly distributed in space but should be
organized in larger structures. To map these structures, we return to
Hubble’s law. Remember that when we look at an astronomical
image, we see objects as if painted on the two-dimensional dome of
the sky; we have no depth perception at all and cannot necessarily
distinguish between a nearby galaxy and one lying at a much
greater distance. But Hubble’s law gives us a method to explore the
third dimension: by measuring the redshift of each galaxy, we can
determine its distance and see how the galaxies are distributed in
space.
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Starting in earnest in the late 1970s, astronomers began
measuring the redshifts of thousands of galaxies and were able to
make three-dimensional maps of their distribution. They immediately
noticed that the galaxies are not at all distributed randomly in space:
they found clusters of galaxies (up to 3 million light-years across)
containing thousands of galaxies, and empty regions (voids 300
million light-years across) almost completely devoid of galaxies.
Indeed, these early maps caused people to question the
cosmological principle; there was so much structure apparent in
these maps that people wondered whether there was any scale on
which the universe appeared smooth, or whether ever-larger surveys
of the sky would show yet larger structures. The Sloan Digital Sky
Survey was designed in part to address this question. It is a
telescope dedicated to mapping the sky; it has measured redshifts
now for more than 2 million galaxies. Figure 15.4 is a map of a small
fraction of these galaxies, those in a 4°-wide slice in Earth’s
equatorial plane; if we showed you all the data in one plot, the
density of points in the figure would be so high that it would show
solid ink, not allowing you to see any of the structure.
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FIGURE 15.4. Distribution of galaxies in an equatorial slice from the Sloan Digital
Sky Survey. The Milky Way is at the center. Each dot represents a galaxy. The two
fans show galaxies in the survey region; the two blank regions are regions the
survey did not cover. The radius of this diagram is about 2.8 billion light-years.
Credit: J. Richard Gott, M. Jurić, et al. 2005, Astrophysical Journal 624: 463–484

Each of the more than 50,000 dots in this figure represents a
galaxy of 100 billion stars. It is worth taking a moment to appreciate
the enormousness of these numbers.
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We can see two big slices of the pie; the Milky Way galaxy sits at
the center of the image. The empty regions on the left and the right
have not been covered by the survey; this is the region obscured by
dust from the Milky Way, making it difficult to pick out distant
galaxies.

The radius of this figure is 860 Mpc, almost 3 billion light-years.
Even a cluster of galaxies appears small in this picture; the majority
of galaxies appear to lie along filaments, strings of galaxies
hundreds of millions of light-years long. A particularly prominent
filament, dubbed the Sloan Great Wall, appears somewhat above the
center of the image. It has a length of 1.37 billion light-years. But no
structures stretch across the entire width of either survey slice,
indicating that on the very largest scales, Einstein’s cosmological
principle holds.

Notice in the figure that the density of galaxies does drop off
dramatically near the outer edges of the map. This is not evidence
that the cosmological principle is wrong: it simply reflects the fact
that galaxies in these regions are the most distant from us and are
therefore the faintest. Only a small fraction of the most distant
galaxies are luminous enough for the Sloan Digital Sky Survey to
measure their spectra, and therefore for their redshifts to be
included in this map.

If we compare this to our map of the CMB from WMAP, it is not
obvious, even under the process of gravitational instability, that
fluctuations at the level of one part in 100,000 can evolve into the
incredibly structured universe we see today in the galaxy
distribution. The equations of gravitational instability (which are
based on Newton’s law of gravity, with the added complication of the
expansion of the universe) can be solved approximately and tell us
that the numbers are roughly right, but to do the calculation
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properly, and understand the gravitational tug of each parcel of
matter in the universe on every other part, requires a large
computer. One starts with a distribution of matter with subtle
fluctuations at the level that we measure from the CMB map. Then
one lets gravity, plus the expansion of the universe, take over and
evolve the structure for 13.8 billion years on the computer. The
resulting distribution of galaxies these computer simulations predict
shows the same sort of structure we see in the galaxy maps:
clusters, voids, and filaments, of just the right size and contrast to
match observations.

Of course, we don’t expect the computer simulations to produce
the exact structures of the present-day universe, just ones with the
same statistical properties. Remember that the part of the universe
we’re seeing in the CMB is very distant from us; we’re not seeing the
matter that evolves into the galaxies that are near us. But we do
assume that the general properties, including the fluctuations, of the
material giving rise to the CMB, are statistically similar to that matter
which gives rise to the galaxies around us. Overall, large computer
simulations based on the Big Bang model have been remarkably
successful in reproducing the filamentary weblike structure that we
see in the observations.

This, then, is the final triumph of the Big Bang model. We have
explored the predictions of the model and compared them with
observations in every way that we could. We inferred that the
universe was born 13.8 billion years ago, in excellent accord with
(i.e., slightly older than) the ages of the oldest stars. We concluded
that hydrogen and helium nuclei were formed in the first few
minutes after the Big Bang, in a 12:1 ratio, which is exactly what is
observed, and we are able to predict the quantity of deuterium
produced, also in agreement with observations. We predicted the
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existence of the CMB, and its various properties: its spectrum, its
temperature, and its incredible smoothness; all this is exactly as
observed. Perhaps most impressively, we predicted that the CMB
should not be perfectly smooth but should show fluctuations at one
part in 100,000, with a predicted variation depending on the angular
scale that should follow a complicated curve. The WMAP and Planck
satellite measurements have confirmed this prediction as well.
Finally, computer models of how these fluctuations should grow
under gravitational instability predict a highly structured universe
today, with galaxies arrayed along filaments hundreds of millions of
light-years long, just as the maps from the Sloan Digital Sky Survey
reveal. The Big Bang model is far more than “just a theory”: it is
supported by a vast array of empirical, quantitative evidence and has
passed every test we have given it with flying colors.
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16
QUASARS

AND SUPERMASSIVE
BLACK HOLES
MICHAEL A. STRAUSS

In the 1950s, radio astronomy, the study of electromagnetic
radiation that astronomical objects emit at wavelengths longer than
a centimeter or so, was still in its early days. The radio telescopes of
the day were making the first maps of the sky. It was a challenge to
determine which astronomical objects were responsible for the radio
sources seen, because the radio telescopes did not have the
resolution to pinpoint accurately the position of the radio source on
the sky. That is, they could specify the position of any given source
only to the nearest degree or so, and it wasn’t at all obvious which
of the thousands of stars and galaxies lying in that region of sky
were responsible for the radio emission.
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The best radio maps of the sky at the time were made using a
radio telescope in England; the Cambridge University astronomers
who ran the survey published several catalogs of sources found in
these maps. Our story starts with the 273rd entry in the third of the
Cambridge catalogs, called, for short, 3C 273. The Moon’s path on
the sky occasionally passes over 3C 273, and by timing exactly when
this radio source disappeared behind the Moon, astronomers were
able to pinpoint its position to much greater accuracy. Astronomers
then took images of that region of the sky in visible light, to see
what was responsible for the radio emission. To their surprise, 3C
273 coincided with what appeared to be a star, one too faint to be
seen by the naked eye, but certainly bright enough to be easily
studied with what at the time was the largest visible-light telescope
in the world, the 200-inch telescope at Palomar Observatory.
Maarten Schmidt, a young professor at Caltech in Pasadena, knew
that to understand what sort of star it was, he needed to measure
its spectrum. He obtained the spectrum with the 200-inch telescope
in 1963, but when he first looked at the data, he couldn’t make
sense of what he saw.

He saw a series of very broad emission lines whose wavelengths
did not correspond to any atoms he had ever seen before. His first
thought was that this might be some really unusual type of white
dwarf star, but then he had an “aha!” moment. He realized that the
emission lines were just the familiar Balmer lines of hydrogen, which
form a regular pattern well known from studies of stars. However,
these lines were not at their familiar wavelengths, but were all
shifted systematically to the red by an astonishing 16% (figure
16.1). That is, the wavelength of each of these features in the
spectrum was 16% larger than the Balmer transitions observed here
in the lab on Earth.
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FIGURE 16.1. The spectrum of the quasar 3C 273. The strongest emission lines
present are Balmer lines of hydrogen, as marked. In each case, the arrow is drawn
from the rest wavelength to the observed wavelength of the line—shifted redward
in each case by 15.8%. The other emission lines apparent in the spectrum are due
to oxygen, helium, iron, and other elements. Credit: Michael A. Strauss, from data
taken by the New Technology Telescope at La Silla, Chile; M. Türler et al. 2006,
Astronomy and Astrophysics 451: L1–L4, http://isdc.unige.ch/3c273/#emmi,
http://casswww.ucsd.edu/archive/public/tutorial/images/3C273z.gif

Could this be a redshift due to the expansion of the universe? A
redshift that large corresponds (using the modern value of the
Hubble constant) to a distance of about 2 billion light-years. A small
number of galaxies known at the time had similarly large redshifts,
but they were incredibly faint, at the limit of what telescopes were
capable of measuring. Yet 3C 273 was several hundred times

http://isdc.unige.ch/3c273/#emmi
http://casswww.ucsd.edu/archive/public/tutorial/images/3C273z.gif
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brighter than these faint fuzzy galaxies. Moreover, it appeared
starlike, a point of light, not having an extended size like a galaxy.
This left two interpretations: (1) perhaps this object was much closer
than 2 billion light-years—even within our own galaxy—and the
redshift had nothing to do with the expansion of the universe, or (2)
this star was enormously luminous. The inverse-square law tells us
that for 3C 273 to be as bright as observed, if it were really at a
distance of 2 billion light-years, it would have to be hundreds of
times more luminous than an entire galaxy containing 1011 stars!

Maarten Schmidt told his colleague Jesse Greenstein about his
discovery. It turned out that Greenstein had measured the spectrum
of another radio source, 3C 48; Greenstein immediately realized that
this must be a similar object, at an even higher redshift of 0.37 (or
37%). Schmidt mused that many such objects must be out there to
discover, and that he better get busy finding them. As he and others
discovered more of these starlike radio-emitting objects with ever-
larger redshifts, they needed a name for them. The first term they
used was quasi-stellar radio source, but this was too much of a
mouthful, and it was quickly shortened to quasar. While the first
quasars were all found by their radio emissions, Allan Sandage
(famous for his measurements of the Hubble constant) soon
discovered similar starlike objects at high redshifts that had no
associated radio emission; the majority of quasars in fact are faint in
the radio part of the spectrum.

Fritz Zwicky, whom we met in chapter 12, was a colleague of
Schmidt and Greenstein at Caltech. He was one of the most brilliant,
and eccentric, characters in twentieth-century astronomy (figure
16.2). He made a series of discoveries so far ahead of their time that
the rest of the scientific community took decades to catch up with
him. We’ve already seen that in 1933, he was the first to infer the
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existence of dark matter from the motions of galaxies in clusters.
The idea only took hold in the astronomical community in the 1970s,
when Morton Roberts and Vera Rubin and her colleagues started
measuring the rotation of the outer parts of galaxies, and Jeremiah
P. Ostriker, Jim Peebles, and Amos Yahil began using stability
arguments to infer the existence of large amounts of dark matter in
galaxies. Zwicky and his colleague Walter Baade hypothesized
(correctly!) in 1934 that neutron stars can form in supernova
explosions, an idea that was confirmed only three decades later with
the discovery of pulsars. In fact, Zwicky and Baade coined the word
supernova. Zwicky also predicted correctly, decades ahead of the
observations that would confirm it, that Einstein’s light-bending
effect in general relativity could make distant galaxies act like
gravitational lenses, magnifying even more distant galaxies behind
them. And he claimed that he was the first to discover quasars.

FIGURE 16.2. Fritz Zwicky, posing with his catalogs of galaxies. Photo credit:
Archives Caltech
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Zwicky knew he was smart, and wasn’t shy about expressing his
views when he thought others were mistaken. Denied access to the
200-inch Palomar telescope, Zwicky did most of his work with a
small, 18-inch survey telescope at Palomar, using it to discover
supernovae (he found more than 100 of them in his lifetime) and
make catalogs of galaxies. He noticed that some of the galaxies he
tabulated were quite compact, almost appearing starlike. But
because he was not allowed to observe on the 200-inch, he wasn’t
able to measure spectra of these galaxies and determine their
physical nature. Some of the compact galaxies he had noticed
turned out later to be quasars of the type that Schmidt and Sandage
had subsequently discovered, and Zwicky claimed—with some
justification—that he should be given credit for their discovery.

The graduate students at Caltech loved Zwicky, who shared office
space with them in the sub-basement of the astronomy building on
the Caltech campus. Zwicky passed away in 1974: my colleagues Jim
Gunn, who was a graduate student at Caltech in the 1960s, and Rich
Gott, who was a postdoc there from 1973 to 1974, remember him
fondly.

Zwicky’s basic insight was correct. Some compact galaxies had
an incredibly luminous unresolved pointlike source of light (the
quasar) coming from the center of the galaxy, which outshone the
faint parts of the galaxy surrounding it, making the galaxy itself
appear almost pointlike, like a star.

This phenomenon is clearly seen in images of quasars taken with
the Hubble Space Telescope: its sharp images can distinguish the
light from the quasar and the faint extended light around it from the
galaxy in which it sits. These images were taken by my wife Sofia
Kirhakos, in collaboration with her colleagues John Bahcall and Don
Schneider, so I am particularly pleased to show them in this book
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(figure 16.3). In the center of each image is a very bright point of
light; that’s the quasar itself. It is surrounded by a galaxy (and in
one case, a pair of galaxies that appear to be colliding): spiral arms
are visible. Images such as these resolved the distance controversy:
quasars really are at the distances their redshifts imply (they are not
just a weird type of star in our own Milky Way galaxy), and thus they
are incredibly luminous.

FIGURE 16.3. Quasars in their host galaxies, taken by the Hubble Space
Telescope.
Photo credit: J. Bahcall and M. Disney, NASA

To understand what the quasar phenomenon is all about, let us
return to the spectrum of 3C 273. The emission lines here are broad,
spread over a range of wavelengths, even though we learned in
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chapter 6 that atomic transitions correspond to specific, precise
energies and thus wavelengths. We understand this as a
manifestation of the Doppler shift: within the quasar, there is gas
moving at a range of speeds. The quasar overall is moving away
from us at 16% of the speed of light, but relative to that overall
motion, some of the gas in the quasar is moving toward us (blue
shifting part of the emission line relative to the average), whereas
some of the gas is moving away from us (making part of the
emission line even more red shifted). This broadens or widens the
emission line. Consider this emission to be from gas in orbit around
a central mass: there is gas at every point along a circular orbit, and
each of these points has a different component of motion along the
line of sight, and thus a different Doppler shift. The broad emission
line reflects this range of Doppler shifts.

We can take this one step further. The width of the emission line
tells us how fast the gas is moving; a typical value for quasars is
6,000 km/sec. Something is causing the gas to move at this
enormous speed. We will hypothesize that these motions are due to
gravity—that this is gas moving in orbit around some central object,
whose nature we would like to understand.

What is the radius of this orbit? If we can determine this, then
we can use Newton’s Laws and our knowledge of the speeds to
calculate how massive that central object must be. We’ve already
seen that quasars appear pointlike, like a star, and therefore they are
smaller than what our telescopes can resolve. A clue to their true
sizes became available when people discovered that quasars are
variable; their brightness changes significantly on timescales of a
month or so.

Imagine that the light from a quasar was coming from a region a
light-year across. The light that reaches us from the front side of the
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quasar (as seen by us) would arrive a year earlier than the light from
the back. Even if the whole structure were somehow to double in
luminosity instantaneously, the brightness we would detect would
brighten gradually over the course of a year, as first the light from
the front side, then eventually the back side, reached us. Thus, the
fact that quasars change their brightness on timescales of a month
tells us that they can’t be much bigger than a light-month in size.
This size is astonishingly small: remember that stars in our Milky
Way are separated from one another by several light years, and this
volume a light-month across (or even smaller) is emitting as much
energy as several hundred ordinary galaxies.

We now know the speed of the gas moving in the quasar, and
roughly how far it is from whatever is causing it to move
gravitationally. We can carry out the same calculation we did in
chapter 12 when determining the mass of the Milky Way from the
orbit of the Sun around it: the mass is proportional to the velocity
squared times the radius. When we do this calculation for the
quasar, we find a mass of an astonishing 2 ×108 times the mass of
the Sun.

Let us summarize: quasars are found in the centers of galaxies,
they are a light-month or smaller in diameter, they have luminosities
hundreds of times larger than entire galaxies, and have masses
hundreds of millions times the mass of the Sun. Huge masses in a
tiny volume: could this be a black hole? And yet, black holes are
supposed to be black—light cannot escape from them—whereas
quasars are among the most luminous objects in the universe. In
addition, the only way we know how to make a black hole is to
collapse a massive star. The most massive stars we know of are
perhaps 100 times the mass of the Sun; we can’t make a 200-
million-solar-mass black hole that way. What is going on?
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Well, black holes can grow in mass. Consider gas falling toward a
black hole. If it is going straight in, it will simply be swallowed by the
black hole and disappear without a trace, adding to its mass but
otherwise having no effect. However, it is more likely that the gas
has a bit of sideways motion, or angular momentum, relative to the
black hole. Because of this angular momentum, it will not fall
straight in but will orbit around the black hole. In analogy to stars
orbiting in the Milky Way, we think that the gas around a black hole
lies in a flattened rotating disk. The gravity of a black hole is strong;
the gas closest to the black hole is moving tremendously fast, at an
appreciable fraction of the speed of light. The gas that is closer to
the black hole will have a higher velocity and rub against the gas a
little farther out. This friction can heat the gas up tremendously, to
temperatures of hundreds of millions of degrees. And as we’ve seen
over and over again, hot things radiate energy.

So while the black hole itself is invisible, the gas around it, before
it falls all the way in, can be tremendously luminous. A quasar is a
supermassive black hole, surrounded by a disk of gaseous material
glowing so hot that it can outshine the entire galaxy in which it is
embedded. Indeed, it is material falling in during this process that
can cause a relatively small black hole, born presumably from the
death of a massive star as a supernova, to grow: as material falls in,
the disk material shines as a quasar and continually adds to the
mass of the black hole. The quasar is powered by gravitational
energy turned into kinetic energy as the gas spirals deeper and
deeper into the gravitational well of the black hole. As the gas finally
enters the black hole, it adds to the black hole mass. This accretion
process, operating over hundreds of millions of years, can result in
black holes with masses of millions, or even billions, of solar masses.
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The tremendous energy associated with the disk close to the
black hole causes energetic particles to be emitted. These particles
are blocked by the disk itself, and thus must spurt out as a jet of
material perpendicular to the disk, entrained in part by powerful
magnetic fields. Such a narrow jet is seen as the faint linear feature
at 5 o’clock in figure 16.4, a Hubble Space Telescope picture of 3C
273 (the sharp, straight spikes emanating from the quasar itself are
artifacts of the telescope optics).

Such jets are the hallmark of black holes into which material is
falling. The elliptical galaxy M87 has one of the most massive black
holes in the nearby universe, 3 billion times as massive as the Sun.
It is also emitting a jet, about 5,000 light-years in length.

FIGURE 16.4. Quasar 3C 273 and its jet.
Photo credit: Hubble Space Telescope, NASA

There is a popular mental image of black holes as cosmic vacuum
cleaners, slurping up everything in their vicinity. However, imagine
that the Sun turned magically into a black hole (of the same mass)
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tomorrow. This would of course be terrible news for us, because we
would no longer receive heat and light from the Sun and Earth
would freeze. But Earth’s orbit would remain unchanged. The
angular momentum of Earth in its orbit around the Sun will keep us
circling, as we have for the past 4.6 billion years. Similarly, stars in
orbit around the black hole in the center of the Milky Way are not
going to be swallowed up by that black hole any time soon. This
black hole probably went through a quasar phase in the distant past,
when it grew to its current size of 4 million solar masses. We can
measure its mass today by plotting the orbits of individual stars we
see orbiting around it. However, there is no material falling into it
now to form a disk, so it is currently quiescent and is not shining as
a quasar.

Quasars are rare in the nearby universe. Indeed, 3C 273, 2 billion
light-years away, is one of the nearest luminous quasars. Quasars
were much more common in the early universe; most quasars are at
high redshift, and therefore at great distances. The light from these
distant quasars has traveled for billions of years to reach us. We are
thus seeing them at a time when the universe was significantly
younger than it is today. The fact that the number of quasars in the
universe has changed with time is direct evidence for an evolving
universe, contradicting Hoyle’s perfect cosmological principle (see
chapter 15), which endorsed an unchanging universe.

From the numbers of quasars we see in the early universe, we
predict that supermassive black holes in the present-day universe
must be ubiquitous. After all, black holes only grow; they don’t go
away once they’ve formed. (We’ll see in chapter 20 that black holes
can eventually evaporate due to quantum effects, but for
supermassive black holes, this process is slow indeed, and is quite
negligible over the billions of years we’re discussing here.) The fact
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that we don’t see these black holes shining as quasars in nearby
galaxies today simply tells us that they are currently quiescent,
without gas falling into them. The supermassive black hole in the
center of our Milky Way, whose presence we inferred from the
motions of stars in its vicinity, is just one such example.

Looking for black holes in the centers of other galaxies is a
challenge. If the black hole is not being fed by gas coming in from
an accretion disk, there will be no quasarlike emission for us to see.
However, we can use the Doppler shifts of stars near the centers of
galaxies to infer the presence of a massive gravitating object. This is
done most easily for nearby galaxies, for which we can resolve the
central regions, where the gravity of a black hole will dominate the
motions of stars.

Astronomers have now searched in detail for black holes in about
100 galaxies. In essentially every case that they had the sensitivity
to detect it, they did find evidence for a supermassive black hole in
the center. As far as we can tell, essentially every large galaxy with a
significant bulge (i.e., ellipticals and most spirals) hosts a black hole.
Our Milky Way, with a black hole of a mere 4 million solar masses, is
a relative wimp; the most massive black holes among the nearby
galaxies are several billion times more massive than the Sun (as we
saw for M87). Moreover, the larger the elliptical galaxy (or the bulge
of the spiral galaxy), the more massive the black hole will be; the
mass of the black hole is typically about 1/500 of the mass of the
bulge of stars in which it sits.

The tremendous luminosities of quasars make them much
brighter than galaxies. Thus a distant quasar is much brighter, and
therefore easier to see, than a galaxy at the same distance. What is
the most distant quasar we can see in the universe? Again, because
of the finite speed of light, the light we see from such a distant
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quasar left it when the universe was much younger than it is today.
When we look at objects at large distances in astronomy, we are
looking into the past: our telescopes are time machines.

In chapter 15, I described the Sloan Digital Sky Survey, which
has taken images of the sky and measured redshifts for 2 million
galaxies. It has also obtained spectra of more than 400,000 quasars.
From this sample, we know that quasars were most common
between 2 and 3 billion years after the Big Bang; this is when the
supermassive black holes found in big galaxies today are thought to
have gained most of their bulk. Two billion years after the Big Bang,
about 12 billion years ago, corresponds to a redshift of 3. That is,
the spectral lines in the quasars appear with wavelengths 4 (i.e., the
redshift + 1) times the wavelength they would have without the
expansion of the universe. Redshift, in this case, is not a subtle
phenomenon but a big effect!

Edwin Hubble found a linear relationship between redshift and
distance for galaxies. At very large redshifts, this relationship is
somewhat more complicated; it turns out that a quasar at redshift 3
is now about 20 billion light-years from Earth. How can this be, if the
Universe is only 13.8 billion years old? Remember that in the time
since the light left the quasar until now, the universe has expanded
fourfold (again, redshift + 1), carrying the quasar farther away, and
this distance of 20 billion light-years corresponds to where it is now
(we call this its co-moving distance).

Figure 16.5 shows the spectrum of the most distant quasar my
colleagues and I found in the Sloan Digital Sky Survey. The very
strong emission line at a wavelength of 9,000 Ångstroms (0.9
microns) corresponds to the transition from the second energy level
to the ground state in hydrogen—the Lyman alpha line. Blueward of
this emission line (i.e., in the blue direction, at shorter wavelengths),
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the spectrum drops to zero; this turns out to be due to absorption
from hydrogen gas distributed in the volume between the quasar
and us. The spectrum shows emission at near-infrared wavelengths
and essentially nothing at shorter wavelengths, making this object
appear tremendously red.

FIGURE 16.5. Spectrum of the quasar SDSS J1148+5251 at redshift 6.42. This
quasar was discovered by Michael Strauss, Xiaohui Fan, and their colleagues in
2001, the highest-redshift quasar known from the time of its discovery until 2011.
The light we are seeing from this quasar was emitted when the universe was less
than 900 million years old. The strongest peak (emission line) in this quasar is due
to emission from hydrogen atoms (the n = 2 to n = 1 transition; see figure 6.2),
which has been greatly redshifted from its rest wavelength of 1,216 Ångstroms to
9,000 Ångstroms. The sharp drop in the spectrum below 9,000 Ångstroms is due
to absorption from hydrogen gas between the quasar and us. Credit: Image by
Michael A. Strauss using data in R. L. White, et al. 2003, Astrophysical Journal
126: 1, and A. J. Barth et al. 2003, Astrophysical Journal Letters 594: L95
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Thus the job of finding the highest-redshift quasars is
straightforward: look in the Sloan Digital Sky Survey images for the
reddest objects you can find. This is not as easy as it sounds; the
survey includes images of about half a billion objects, and we had to
make sure that an apparent red color for any given object had not
resulted from some sort of rare processing glitch.

There is another challenge. We know from our studies of stars
that the cooler the star the redder it appears. In 1998, as the first
images from the Sloan Digital Sky Survey became available, my
student Xiaohui Fan and I started a program of obtaining spectra of
the reddest objects we could find in the data, to confirm their quasar
nature and to determine their redshifts. We used the Apache Point
Telescope (at the same observatory where the Sloan Digital Sky
Survey telescope is located, in Sunspot, New Mexico). The telescope
is remotely operable over the internet: rather than flying across the
country, we could simply eat an early dinner at home, then drive into
the office, where we would carry out our observations, sending
instructions for moving a telescope 2,000 miles away.

As we started measuring spectra of these very red objects, we
hit pay dirt almost immediately, but in an unexpected direction.
Mixed in with an assortment of high-redshift quasars, we stumbled
across some of the coolest (and thus lowest-mass) stars known,
right here in our Milky Way. Indeed, these are the substellar objects
discussed in chapter 8, with masses too low to burn hydrogen in
their cores. These stars have temperatures of 1,000 K or even lower,
and their spectra were quite unfamiliar to us when we first started
finding these objects. I remember scrambling to look up the few
papers that had described such cool stars at 3 in the morning, as we
measured the spectra and struggled to understand them. In a single
night of observing, we would take spectra both of the lowest-
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luminosity substellar objects known, at a distance of only 30 light-
years, and enormously luminous quasars close to the edge of the
observable universe. This is the most extreme illustration of the fact
that with an astronomical image alone, we have no depth
perception. The very nearby (in astronomical terms) and
extraordinarily distant objects both appeared as very faint red points
in our data, requiring detailed spectra to distinguish the two.

We continued pushing to ever-redder objects, as our techniques
for removing glitches in the images improved. We broke the existing
quasar redshift record (4.9 at the time we started our work) multiple
times. Whenever we did so, we would call our colleague Jim Gunn
(the project scientist for the Sloan Survey and a pioneer in quasar
studies in his own right). Waking him out of a deep sleep (it was
usually 3 a.m. or so, after all!), we’d say, “Jim, we broke the record
again!” “Good work, boys,” he would respond; “I always want to be
woken up for this news!” And then he would go back to sleep.

The Lyman alpha hydrogen line apparent in the spectrum of our
most distant object in figure 16.5 is normally found at a wavelength
of 1,216 Ångstroms; here it has been redshifted all the way into the
near-infrared part of the spectrum at 9,000 Ångstroms. The redshift
is (9,000 Å – 1,216 Å)/1,216 Å, or 6.42, corresponding to a distance
now of 28 billion light-years. This was the highest redshift quasar
known when we discovered it in 2001. Perhaps even more
impressive than its great distance is the fact that the light we see
from this object left it about 13 billion years ago, when the universe
was only about 850 million years old. If the CMB radiation comes
from the universe’s infancy, we’re now probing a time when it was a
toddler.

This brings up another cosmic mystery. As noted earlier, we can
use a quasar’s spectrum to estimate the mass of the black hole
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powering it. A typical value for the most distant quasars is about 4
billion solar masses, about as massive as the largest black holes we
know of in the present-day universe. But remember that the
smoothness of the CMB tells us that the very early universe was
almost perfectly uniform. From this almost complete absence of
structure, we have to form supermassive black holes, the densest
conceivable objects, in only 850 million years. To make such a black
hole, the universe had to form a first generation of stars, then
explode them as supernovae, leaving behind stellar-mass black
holes. These black holes then had to accrete matter at a tremendous
rate to acquire such an enormous mass. Theoretical models suggest
that this is barely possible under ideal conditions, implying that such
high-redshift quasars should be rare. Indeed they are; after more a
decade of searching, we’ve found only a few dozen quasars at the
very highest redshifts.

The push for the most distant quasars continues: in 2011, our
record was broken in spectacular fashion with the discovery of a
quasar at redshift 7.08, using a survey that was sensitive to longer
wavelengths (further into the infrared) than the Sloan Survey. Since
the time when this quasar emitted the light we are seeing today, the
universe has expanded by a factor of 8.08. Other teams are using
the Hubble Space Telescope, the Subaru Telescope in Hawaii, and
other telescopes to find galaxies at higher redshifts still. It remains
unclear whether models for galaxy formation and black hole growth
will be able to explain these and future discoveries, if the redshift
records continue to be broken. There should be interesting times
ahead!

The wonderful thing about astronomy is that every time we look
at the heavens in a new way, we make fundamental new and
unanticipated discoveries. The Sloan Digital Sky Survey, whose
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discoveries have been prominent in this chapter and chapter 15, is a
good example of this. I am currently involved in planning for its
successor, The Large Synoptic Survey Telescope, currently under
construction on a mountaintop in the Chilean Andes. It will have a
much larger light-gathering power than the Sloan Telescope, and in
its 10-year survey lifetime, it will study the properties of faint
galaxies and quasars, map the distribution of dark matter from the
gravitational lensing distortions it causes in the shapes of galaxies,
and discover hundreds of thousands of supernovae and other
transient phenomena. The telescope will be making a movie of a
quarter of the entire sky: 860 complete frames in 10 years. This will
require us to process 30 terabytes of new data every day. The
survey should discover hundreds of thousands of Kuiper Belt objects,
and also spot Earth-approaching asteroids. But the most exciting
discoveries are likely to be those we haven’t even imagined yet, the
“unknown unknowns,” in Donald Rumsfeld’s famous phrase.
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17
EINSTEIN’S ROAD

TO RELATIVITY
J. RICHARD GOTT

Einstein’s name is synonymous with genius, as in “Hey, Einstein, get
over here!” (“Hey, genius, get over here!”) or “He’s no Einstein,”
meaning “He’s no genius.” Einstein is famous for being a genius.
Newton was also a genius. But around the world and throughout
world history there have been other geniuses as well. Who is
preeminent in English literature? Shakespeare! From his plays and
poems, Shakespeare is often cited as the person in world history
with the largest demonstrated vocabulary. His works contain a
vocabulary of 31,534 different words. A statistical analysis of his
works by Bradley Efron and Ronald Thisted suggests he must have
actually known more than 66,000 different words. Shakespeare
would take Newton on the Verbal portion of the SAT! But Newton
would beat Shakespeare in the SAT’s Math section, I suspect.



362

Newton often gets the edge over Einstein, because in addition to his
work in gravity and optics, he made important contributions in math,
inventing differential and integral calculus. But Newton was also
lucky, born at the right place at the right time—in Europe when they
were talking about just these kinds of problems. Newton’s mentor
and his professor at Cambridge, Isaac Barrow, was interested in
calculating the volumes of barrels and other such objects—a topic
that integral calculus would tackle. Clearly, the time was ripe for
discovering differential and integral calculus. In fact, the philosopher
and mathematician Gottfried Wilhelm Leibniz invented differential
and integral calculus independently in Europe. If you look at a world
map, you see that Newton and Leibniz lived just a few hundred miles
apart at roughly the same time. This is not simply a coincidence.
Europe was talking about these ideas at that time.

The world of the late seventeenth century was primed for a great
discovery, because Kepler had already quantified 600 pages of
observations on the positions of the planets, as recorded by Tycho
Brahe, and converted them into three simple laws of planetary
motion that could be subjected to mathematical analysis. As Michael
discussed in chapter 3, Newton used Kepler’s third law to derive the
1/r2 force law for gravity. In similar fashion, in the twentieth century,
experimental data on the wavelengths of the hydrogen Balmer series
lines gave clues to a formula describing the energy levels in the
hydrogen atom and paved the way for a quantum understanding of
the atom by Neils Bohr and Edwin Schrödinger.

Time magazine picked Einstein as the most influential person of
the twentieth century—the “Person of the Century.” Gutenberg,
Queen Elizabeth I, Jefferson, and Edison were each judged most
important in their centuries by Time. Shakespeare just missed out,
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because Time selected Isaac Newton as its “Person of the
Seventeenth Century.”

Newton has a very nice life-sized statue of himself in Trinity
College, at Cambridge University. William Wordsworth wrote a poem
about the statue, calling it:

The marble index of a mind forever
Voyaging through strange seas of Thought, alone.

The statue has an inscription on it: Newton Qui genus humanum
ingenio superavit. One translation of this is: “Newton, who in his
genius surpassed the human race.” For those like Neil who believe
that Newton was the world’s smartest person, here is some real
evidence in favor of that—in marble. Einstein has a larger-than-life-
sized statue in Washington, D.C., near the Vietnam Memorial, in
front of the National Academy of Sciences. He is sitting down, and
his statue is still 12 feet tall. Children come and play on his knees.

Now let me compare Einstein and Newton a bit more. I’m not
going to contest Neil’s contention that Newton is the greatest
scientist ever. I want to give Newton his due. But I am going to
argue that Einstein is someone who should compete for this title—
someone in Newton’s league.

What is Newton’s most famous equation?

F = ma.

What is Einstein’s most famous equation?

E = mc2.
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Which one of these two equations is more famous? Newton’s
equation, which we discussed in detail in chapter 3, says that more
massive objects are harder to accelerate. Important for dynamics,
but pretty simple. It’s harder to get a piano moving than a
harmonica. Einstein’s equation says that a tiny bit of mass can be
converted into an enormous amount of energy. It is the secret
behind the atomic bomb. It tells us how the Sun shines. Which
equation seems more important to you?

Newton has another famous equation: F = GmM/r2 for the
gravitational force between two particles of masses m and M. This is
quite important. Einstein has another equation too: E = hν, where
he found that light comes in particles of energy called photons with
an energy equal to Planck’s constant h times their frequency ν.
Newton thought, to his credit, that light was made of particles, but
you might say Einstein proved it. Light has a particle nature as well
as a wave nature, a notion that is crucially important for quantum
mechanics.

Both men invented things. Newton invented the reflecting
telescope. All the big telescopes now are reflecting telescopes. The
Hubble Space Telescope and the Keck telescopes are reflecting
telescopes. Einstein invented the principle behind the laser. Every
time you play a CD or a DVD, you are using Einstein’s invention.
Both men did some government work. Newton became Master of
the Royal Mint. He invented the milling on the edges of coins that
we still use today. This prevented thieves from scraping silver off the
edges of silver coins and passing off the coins for full value. If they
scraped off the milling, you could tell. Every time you pick up a
quarter, you can see Newton’s influence. Einstein’s decisive role in
world affairs is well known: he wrote a crucial letter to President
Franklin D. Roosevelt, which led to the Manhattan Project and the
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atomic bombs that ended World War II. What Einstein did then was
so important that we are still dealing with its effects today.

Einstein was such a famous character that people loved to tell
anecdotes about him, which then added to the Einstein lore. One
such story (perhaps apocryphal) goes like this: Einstein was talking
to a man at the Institute of Advanced Study in Princeton. All at once
the man reached inside his coat pocket and pulled out a small
notebook and scribbled something down. Einstein asked, “What’s
that?” “Oh, this is my notebook,” the man said. “I carry it with me
everywhere, so if I have a good idea, I can write it down so I don’t
forget it.” “I never had need for such a notebook,” Einstein replied. “I
only had three good ideas.” So what were these good ideas, and
how did Einstein get them?

The first was special relativity, which led to E = mc2. The second
was the photoelectric effect, the E = hν equation, for which Einstein
won the 1921 Nobel Prize in Physics. And the third was general
relativity, Einstein’s theory of curved spacetime to explain gravity.
After he got the equations worked out, Einstein predicted that light
would be bent, traveling in curved spacetime near the Sun, and he
also predicted the amount of the bending. Stars seen near the Sun
during a solar eclipse should appear in slightly displaced positions in
the sky relative to pictures taken months earlier when the Sun was
nowhere near those stars. The amount of deflection Einstein
predicted (1.75 seconds of arc for stars near the limb, or outer edge,
of the Sun) was twice what Newton would have predicted for
particles traveling at the speed of light according to his theory. Sir
Arthur Eddington led a British expedition to measure this. Einstein’s
prediction turned out to be right, and Newton’s prediction turned out
to be wrong. Today we believe Einstein’s theory and not Newton’s.
Let’s take a moment to appreciate that!
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At the close of the twentieth century, I saw a program on its
greatest moments in sports: Jesse Owens winning the 100 meters at
the 1936 Berlin Olympics; Secretariat winning the Belmont Stakes by
31 lengths, to complete horse racing’s Triple Crown; Mohammed Ali
knocking out George Foreman in Zaire, to regain the heavyweight
boxing championship of the world. What was the greatest play in
science in the twentieth century? Imagine Newton and Einstein on a
basketball court.

Newton’s got the ball. He is dribbling the ball down court. And it’s
not just any ball, it’s his theory of gravity—the proudest thing he
ever did! Einstein comes along, steals the ball, shoots it up, and,
swish, it’s in the basket! This is the greatest play in science in the
twentieth century.

I want to explain how Einstein got his great ideas. Einstein was
good in school. He got good grades in science. Those stories you
may have heard that Einstein got all bad grades in school—forget
them. He was introduced to science at the age of 4, when his father
showed him a compass. Einstein was quite taken with it, and this set
him on a career in science. Einstein taught himself differential and
integral calculus when he was about 12 years old. Smart fellow. And
when he was 16, he started to think about the most exciting physical
theory of his day—Maxwell’s theory of electromagnetism. Maxwell
put together all the different laws of electricity and magnetism.

Electric charges can be either negative or positive. Opposite
charges attract each other and like charges repel each other with a
1/r2 force. Two positive charges repel each other, two negative
charges repel each other, but a positive and a negative charge
attract each other. This is Coulomb’s law. It causes static electricity.
Charges create electric fields, filling the space around them, and if
you are a charge, the electric field acts to accelerate you. The
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electric field causes that 1/r2 electric force. It causes static cling in
your clothes in winter. But moving charges create a magnetic field in
addition, and a magnetic field can affect you if you are a moving
charge. If a charge is not moving, the magnetic force on it is zero,
but if it is moving and there are magnetic fields, there will be a
magnetic force on the charge. These ideas had been worked out in
several more physical laws. Ampère’s law tells you how moving
charges (e.g., a current in a wire) create a magnetic field, and if you
know the magnetic fields and the electric fields at a given point, you
can calculate the electric and magnetic forces on a moving charge at
that location. Faraday’s law describes how a changing magnetic field
creates an electric field. And it was known that there are no
“magnetic charges”; that is, one never finds an isolated north (or
south) magnetic pole with a magnetic field spreading out from it.
The law of charge conservation states that the total number of
charges (number of positive charges minus the number of negative
charges) stays constant. For example, if you had 10 positive charges
and 9 negative charges in a region, the total charge was +1. A
positive and negative charge could combine and eliminate each
other, leaving 9 positive charges and 8 negative charges, but the
total number of charges would remain +1.

Maxwell looked at the known laws of electromagnetism and
showed that they were inconsistent with the law of charge
conservation. To rectify this, he showed that a new effect needed to
be added: a changing electric field creates a magnetic field. He put
all these effects together into a set of four equations: Maxwell’s
equations. (You sometimes see physics students wearing them on T-
shirts!)

Maxwell’s equations included a constant, c, which was related to
the ratio of the strength of electric to magnetic forces. If you had a
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swarm of charges moving with velocities v, the ratio of magnetic to
electric forces they created was of order v2/c2, where c was a
velocity. He then did experiments in the lab where he compared
magnetic and electric forces to determine what the constant c was,
and he got a very high value. He estimated the constant c was
310,740 km/sec. Maxwell also found a highly interesting solution to
his own equations: it was an electromagnetic wave that traveled
through empty space with velocity c.

The magnetic and electric fields were perpendicular to the
velocity of the wave. The wave was sinusoidal, and the electric and
magnetic fields oscillated at your location as the sinusoidal wave
passed by you. Thus, the electric and magnetic fields were both
changing. The changing electric field created the magnetic field, and
the changing magnetic field created the electric field, and they
bootstrapped themselves along with the wave, moving forward
through empty space at a velocity c = 310,740 km/sec.

Eureka! Maxwell recognized that velocity—it was the velocity of
light! Light must be electromagnetic waves! It was one of the great
moments in science. How did Maxwell know the velocity of light? It
was because astronomers—I want to speak up for astronomers here
—had measured the velocity of light! In 1676, Danish astronomer
Ole Rømer noticed that successive eclipses of Jupiter’s moon Io by
Jupiter were more closely separated in time when Earth was
approaching Jupiter but were more widely spaced in time when
Earth was moving away from Jupiter. Looking at those satellites
orbiting Jupiter was like looking at a giant clock face. When we
approach Jupiter, we observe the clock running fast, whereas when
we move away from Jupiter, we observe the clock running slow.
Rømer correctly attributed this to the finite velocity of light. As we
approach Jupiter, the distance to Jupiter shrinks, and light beams
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from successive eclipses have less and less distance to travel to get
to us, speeding their arrival. This effect is like a Doppler shift with
light beams from successive eclipses being crowded together. He
deduced that it must take light approximately 11 minutes to cross
the half-diameter of Earth’s orbit. It actually takes about 8 minutes,
so Rømer was pretty accurate. When Earth is closest to Jupiter, the
Jupiter clock is about 8 minutes fast, and when we are farthest
away, the Jupiter clock is about 8 minutes slow. As discussed in
chapter 8, Giovanni Cassini, in 1672, measured the parallax distance
to Mars, which allowed one to deduce the radius of Earth’s orbit.
Using Rømer’s data and knowing the approximate radius of Earth’s
orbit, Christiaan Huygens was able to estimate the speed of light: he
got 220,000 km/sec (only about 27% low relative to the actual value
of 299,792 km/sec).

In 1728, another astronomer, James Bradley, used a different
method to measure the speed of light. Imagine a star directly
overhead. Its light comes straight down onto you like rain. If you
drive in a car, the rain on the windows comes down at a slant,
because you are moving. Earth is moving at 30 km/sec in its orbit
around the Sun. It’s like moving in a car. If you point your telescope
straight up, the light will fall down and hit the side of your telescope
rather than reach the eyepiece at the bottom—because you are
moving. To see the star, you will have to tilt your telescope to match
the slant of the rain you are seeing in your moving vehicle, Earth.
How much? It has to be slanted by about 20 seconds of arc. When
you observe the same star 6 months later, it will be shifted 20
seconds of arc in the other direction. Bradley was able to measure
that effect, called stellar aberration. The slope of this tilt is
vEarth/vlight, which Bradley found to be about 1 part in 10,000. Thus
he could deduce that the velocity of light was about 10,000 times
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faster than the 30 km/sec orbital velocity of Earth, or 300,000
km/sec. So, in 1865, when Maxwell predicted that his
electromagnetic waves traveling through empty space should have a
velocity of about 310,740 km/sec, he recognized it as corresponding
to the speed of light, which astronomers had already measured
(300,000 km/sec). Within the plausible errors of his prediction (due
to errors in his measurements of electric and magnetic forces) and
the astronomical observational errors, the two numbers agreed.
Light was electromagnetic waves. Maxwell recognized that
electromagnetic waves could have wavelengths much shorter or
longer than those of visible light. We know the shorter ones today as
ultraviolet rays, X-rays, and gamma rays, while the longer ones are
known as infrared, microwaves, and radio waves. In 1886, Heinrich
Hertz proved the existence of electromagnetic waves by transmitting
and receiving radio waves across a room. Maxwell’s was the most
exciting scientific theory of Einstein’s day, and Einstein was very
excited about it too.

Einstein did the following thought experiment in 1896, when he
was just 17 years old. He imagined traveling away from the town
clock at the speed of light. As he looked back at the clock, it would
seem frozen at noon, because the light showing it at noon was
traveling right along with him. Did time somehow stop if you
traveled at the speed of light? He imagined looking at the light beam
traveling alongside him. He would see static waves of electric and
magnetic fields like furrows in a field; they were not moving relative
to him. He was traveling along at the same speed as the wave, so it
would look static to him. But such a stationary wavelike
configuration of electric and magnetic fields in empty space was not
allowed by Maxwell’s field equations. What he was seeing out the
window of his imagined spaceship seemed impossible. Einstein



371

figured there was a paradox here—something must be wrong. It
took him 9 years to figure out how to fix it.

What Einstein did was very original. In 1905, he decided to adopt
two postulates:

1. Motion is relative. The effects of the laws of physics must look
the same to every observer in uniform motion (motion at
constant speed in a constant direction without turning).

2. The speed of light through empty space is constant. The
velocity of light c through empty space should be the same
as that measured by every observer in uniform motion.

These two postulates are the basis of Einstein’s theory of special
relativity. It’s called relativity because “motion is relative” (the first
postulate), and special because the motion is uniform. The first
postulate you have tested yourself. Have you ever been on a jet
plane traveling at 500 miles per hour (in a straight line without
turning), with the shades pulled down so you can see some bad
movie? It seems just like you are still sitting on the ground. In the
moving plane, it seems just like you are at rest. Right now we are
orbiting the Sun at 30 km/sec, and yet it seems like we are at rest.
This first postulate is the relativity principle: that only relative
motions are important, and that you cannot determine an absolute
standard of rest. Newton’s law of gravity obeys this postulate. It said
that the acceleration (change of velocity) of two particles depended
on their separation and had nothing to do with their velocities. Thus
the solar system would work the same way if the Sun were
stationary with the planets orbiting around it, or if the whole kit and
caboodle were moving along at 100,000 km/sec. It wouldn’t matter
to Newton whichever was the case. You cannot tell by any
gravitational experiment in the solar system whether the whole solar
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system is moving or not. In fact it is moving, going around the
center of the galaxy at about 220 km/sec. Newton’s theory obeyed
the first postulate, and Einstein thought Maxwell’s equations should
obey this postulate too. All the laws of physics should obey this
postulate.

The second postulate is peculiar. It means that if I see a light
beam pass me, I must measure its speed to be 300,000 km/sec. But
if another person comes running past me at 100,000 km/sec and
looks at the same light beam, he must not measure it to be going at
200,000 km/sec, as you might think. He must see it going 300,000
km/sec, just like I do. It’s crazy!

It doesn’t make any common sense. Velocities should add. In
fact, the only way it can make sense is if his clocks are ticking at a
rate different from mine and if his measurements of distance are
also different from mine. Remarkably, what Einstein did was to
believe these two postulates and throw common sense right out the
window! If this were a chess game, we would call this a “genius
move” (denoted this way: !!), the kind of move that forces a
checkmate 17 moves later. Einstein was going to assume these two
postulates were true, prove theorems based on thought experiments
derived from the postulates, and see what he got. If those theorems
were then checked with observations and turned out to be correct,
then that would be evidence that the postulates were true. This was
amazing. No one had ever done anything quite like it before.
Einstein’s postulates were falsifiable. 1 If Einstein’s theorems gave
answers that were contradicted by observations, his theory would be
proven wrong. If the theorems agreed with observations, while it
would not prove the postulates themselves, it would certainly
provide evidence supporting them.
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Why did Einstein believe the second postulate? It was because
the velocity of light was a constant in Maxwell’s equations, related to
a ratio of magnetic to electric forces you could measure in the lab.
Maxwell calculated that light waves traveled through empty space at
about 300,000 km/sec. If you saw a light beam passing you at any
other speed (say, at 200,000 km/sec), you would be able to deduce
that you were moving at 100,000 km/sec—you could deduce you
were moving. That would violate the first postulate. In 1887, Albert
Michelson and Edward Morley, in a famous experiment, tried to
measure the velocity of Earth moving around the Sun by bouncing
light beams off mirrors in their laboratory. Effectively, they measured
differences in the speed of light relative to their lab for light beams
traveling parallel and perpendicular to the velocity of Earth. They
achieved enough precision to be sensitive to the 30 km/sec velocity
of Earth around the Sun. Amazingly, they got a result of zero for the
velocity of Earth, as if Earth were stationary and light beams in all
directions traveled at the same speed relative to their lab. But we
know Earth is moving—we see stellar aberration. It was quite
puzzling. But their result is exactly what Einstein’s second postulate
would have predicted. You would always measure the speed of light
to be the same whether Earth were moving or not, and therefore, if
you believed the second postulate, you would have predicted that
Michelson and Morley should have gotten a result of zero.

So, Einstein is going to believe his two postulates and prove
theorems based on them. Here is one result. You can’t build a rocket
ship that travels faster than light. Why is that? Suppose I shine a
laser beam toward a wall in my living room; it hits the wall. I am
allowed to think I am at rest. But if you built a rocket that was going
faster than light, and tried the same experiment on board the rocket,
you would get a different result. If you sat in the middle of your
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rocket ship and directed your laser beam toward the front end of
your ship, it would never get there. Any athlete can tell you that you
cannot catch a runner who is faster than you and has a head start.
The light beam from the laser can’t catch the front end of the rocket,
because the front end of the rocket is traveling faster (faster than
light) and it has a head start. Clearly, if you did this experiment on
the rocket ship, the laser beam would never reach the front end of
the rocket, and you would know that you were moving (faster than
the speed of light, in fact). But wait—that’s not allowed by the first
postulate. Since you are going at constant speed without turning,
you must not be able to prove that you are moving. You must get
the same results that I get in my living room. From this, it follows
that you must not be able to build a rocket ship that travels faster
than the speed of light. A strange result, but if you believe the two
postulates, you must believe this result also. If you go slower than
the speed of light, the laser beam eventually catches the front end
of the rocket. It might take a very long time, but if your clocks were
ticking slowly, for example, it might work out fine. Traveling slower
than the speed of light is okay, but you can’t build a rocket that
travels faster than light. We have tested this in our particle
accelerators, where we make particles like electrons and protons go
faster and faster, nudging them ever closer to the speed of light but
never quite reaching it.

Here is another result. Imagine a “light clock,” in which a light
beam bounces vertically between two mirrors, say, one on the ceiling
and one on the floor; each bounce represents a tick of the clock.
Light travels at 300,000 km/sec, or about 1 foot per nanosecond.
One nanosecond is one billionth of a second. If we separate the two
mirrors vertically by just 3 feet, the clock will tick once every 3
nanoseconds (figure 17.1).
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FIGURE 17.1. Light clocks. My light clock ticks once every 3 nanoseconds. A
similar light clock is carried by an astronaut moving at 80% of the speed of light
relative to me. Light moves at a constant velocity of 1 foot per nanosecond. I see
the light beams in the astronaut’s clock traveling on long diagonal paths 5 feet
long, and therefore I see the astronaut’s clock ticking only once every 5
nanoseconds.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)

It’s a very fast clock, like a grandfather clock, only much faster.
The light beam will bounce up and down, up and down, between the
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two mirrors. It hits a mirror once every 3 nanoseconds. This is my
light clock. Now imagine an astronaut who passes me going left to
right at 80% the speed of light, holding a similar light clock (figure
17.1). That’s slower than the speed of light, so she can do that.
From the point of view of the astronaut, she sees her light clock
ticking normally with the light beam going up and down, ticking
every 3 nanoseconds according to her. But if I look through the
window of her space ship, I see her light clock moving along at 80%
the speed of light and I see her light beam traveling on a diagonal
path. The light beam starts at the bottom, but by the time it has
moved up 3 feet, the upper mirror has moved from left to right by 4
feet. The light beam travels on a diagonal path that is 5 feet long.
We have a 3-4-5 right triangle—3 feet vertically, 4 feet from left to
right, and 5 feet along the diagonal hypotenuse. It solves
Pythagoras’s theorem 32 + 42 = 52. While relative to me the light
beam moves 5 feet diagonally from bottom left to top right, the
astronaut moves 4 feet from left to right. Thus, she is traveling at
4/5 or 80% of the speed of light relative to me. Since I must
observe the light beam to be traveling at 1 foot per nanosecond
(according to the second postulate), I must say it takes
5 nanoseconds to go from bottom left to top right on the diagonal
path of 5 feet I observe. I must see it take another 5 nanoseconds
to come diagonally back down, arriving 8 feet to the right of where it
started. Thus, I must say her clock ticks only once every 5
nanoseconds rather than once every 3 nanoseconds. I must see her
clock ticking slowly (at 3/5 of the rate mine does).

Now for the interesting part. I must observe the astronaut’s heart
to be ticking slowly (also at 3/5 of the rate of mine), or she would
notice that her light clock was ticking slowly relative to her heart,
and she could deduce that she was moving, which is not allowed by
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the first postulate. Any clock she has on board must also be ticking
slowly, at the 3/5 rate, or else she would be able to tell that she was
moving. If she has a muon (an unstable elementary particle heavier
than the electron) that is decaying, it must decay more slowly. She
must age more slowly. She eats dinner more slowly. And . . . she . . .
talks . . . more . . . slowly. Every process on the rocket ship goes
more slowly.

How much more slowly depends on the astronaut’s velocity v: if I
age 10 years, a similar calculation using the light clock 2 shows the
astronaut ages 10 years times √[1 – (v2/c2)]. For velocities that are
small compared with the speed of light, such as we encounter in
everyday life, this aging factor will turn out to be nearly exactly 1. If
v/c is small relative to 1, then (v2/c2) will be really tiny relative to 1;
something really tiny subtracted from 1 leaves something still about
equal to 1, and the square root of 1 is 1—all of which means that
this factor does not appreciably change the astronaut’s aging. That
is, the astronaut would also age 10 years, and I wouldn’t notice any
difference between her aging and mine. That’s why we don’t
ordinarily notice that moving clocks are ticking slowly. However, if
the astronaut is moving at a speed close to the speed of light—say,
at 99.995% the speed of light—then v/c = 0.99995 and √[1 –
(v2/c2)] is only 0.01. You can check that on a calculator. While I age
10 years, I observe the astronaut aging only 1/10 of a year. At
velocities approaching the speed of light, the slowing of time on the
spaceship can be very dramatic.

We believe this formula, because we have checked it
experimentally. Physicists took atomic clocks on plane trips around
the world, going east so that the velocity of the plane added to the
rotational velocity of Earth, and they observed that those atomic
clocks came back slow (by about 59 nanoseconds) relative to atomic
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clocks left on the runway—just as Einstein would have predicted.
Muons in the lab decay with a half-life of 2.2 microseconds—
meaning half of them decay in 2.2 microseconds. But muons that
are traveling toward Earth at nearly the speed of light (as cosmic
rays) decay much more slowly, in accord with Einstein’s formula. We
believe this formula is right, because we have tested it many times.
This is a funny universe, operating in surprising ways, but it seems
to be the universe in which we live. Einstein’s two postulates seem
to be true. We’ll see in the next chapter that these postulates also
lead to the conclusion that E = mc2, and that was verified in the
atomic bomb. These are some truly remarkable results. The results
are remarkable, because the postulates are remarkable. The more all
these theorems check out, the more we may trust that the
postulates are true.
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18
IMPLICATIONS OF

SPECIAL RELATIVITY
J. RICHARD GOTT

Einstein’s theory of special relativity revolutionized our ideas of space
and time. It implied that time could be regarded as a fourth
dimension—added to the three dimensions of space. Interestingly, it
was Einstein’s teacher Hermann Minkowski, using Einstein’s work in
special relativity, who developed this geometric picture of space and
time, publishing his results in 1907. Einstein immediately adopted
this view. We live in a four-dimensional universe. What do I mean by
that? We say that the surface of Earth is two-dimensional. It takes
two coordinates, latitude and longitude, to locate a point on Earth’s
surface. If you know your latitude and longitude, you know your
location on the surface of Earth. But the universe is four-
dimensional, meaning it takes four coordinates to tell you where you
are. If I want you to come to a party, I will have to tell you where in
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latitude and longitude on Earth’s surface to go. I must also tell you
the altitude. You wouldn’t want to show up on the fourth floor, if the
party was on the twelfth floor! And I must tell you at what time you
should arrive. If you come at the wrong time, you will miss the party
just as surely as if you went to the wrong floor. Every event, such as
a New Year’s Eve party on the fifty-fourth floor, at 5th Avenue, and
34th Street, requires four coordinates to locate it: two coordinates to
tell you where to go on Earth’s surface, the altitude, and the time of
the event. Since four coordinates are needed, we know that we live
in a four-dimensional universe.

We can use this idea to draw spacetime diagrams. You have
undoubtedly seen a picture in a book of Earth orbiting the Sun. The
Sun is a big white dot in the center, and Earth’s orbit is shown as a
dashed circle surrounding it (because Earth’s elliptical orbit is nearly
circular). Earth can be shown as a small blue dot at the 12 noon
position on the circle, representing its position on January 1. If we
wanted to show Earth circling the Sun, we could have a sequence of
pictures, with Earth working its way counterclockwise around the
circle. By February 1, it will have reached about 11 o’clock on the
circle, by March 1, it will reach 10 o’clock, and so forth. You could
make a movie of this by making each picture in the sequence a
frame of the movie. As the frames were played, you would see Earth
circling the Sun.

Now imagine taking that film, cutting it up into individual frames,
and stacking those frames on top of one another to form a vertical
stack. Each frame would represent an instant of time, and frames
that were higher in the stack would represent later times. In this
way, you could make a spacetime picture of how Earth orbits the
Sun. Time is the vertical dimension of the stack—the future is toward
the top and the past is toward the bottom. The two horizontal
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directions represent two dimensions of space (as you would see
them in a two-dimensional picture of Earth’s orbit around the Sun).
The Sun is not moving—it’s always in the center; therefore, all these
images of the Sun form a white rod extending vertically up the
stack. In each frame, however, Earth has moved to a new position as
it keeps advancing counterclockwise in its orbit around the Sun,
which makes Earth in the stack appear as a blue helix winding
around the white rod. The radius of this blue helix is 8 light-minutes
—the radius of Earth’s orbit. Vertically, the helix winds around the
Sun once a year. The blue helix winding around the vertical white
rod represents a spacetime diagram. We can add the orbits of
Mercury, Venus, and Mars to the diagram by adding helixes for them
that also wind around the vertical rod representing the Sun. This
diagram is three-dimensional; I am leaving out one of the spatial
dimensions to allow you to visualize the diagram. You couldn’t
visualize this diagram if it were four dimensional—you can only see
three dimensions. We are showing the diagram in 3D in this book
using a stereo pair (figure 18.1). You can either enjoy it as two
photographs of a three-dimensional model from slightly different
viewpoints or follow the instructions (appearing in the text near
figure 4.2) for using both eyes to see it in its full three-dimensional
glory.

The vertical white rod is called the worldline of the Sun—its path
through space and time. It’s white because, as we learned in chapter
4, the Sun is white (not yellow). The blue helix is the worldline of
Earth—its path through spacetime. Notice how blue helix passes
alternately in front of and behind the vertical worldline of the Sun.
The orange helix winding tightly around the Sun is the worldline of
Mercury. It orbits the Sun once every 88 days. The grey helix is
Venus, and the red helix is Mars. The farther out a planet is, the less
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tightly its helix is wound around the Sun. If you think four-
dimensionally, you should not think of Earth as a sphere, but as a
long piece of spaghetti, a helix wound around the Sun. Earth has an
extension in time.
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FIGURE 18.1. Spacetime diagram of the inner solar system. Time is vertical, and
two dimensions of space are shown horizontally. This is a three-dimensional
picture, so we have produced a cross-eyed stereo pair. Follow the same
instructions for stereo viewing as for figure 4.2. The worldline of the Sun is the
vertical white line in the middle. Earth, orbiting counterclockwise, circles first in
front of the Sun and then passes behind it later (further up in the diagram).
Mercury, Venus, Earth, and Mars have successively larger orbital periods and
therefore successively more loosely wound helixes. Photo credit: Robert J.
Vanderbei and J. Richard Gott
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You have a worldline too. It starts at your birth, snakes through
all the events of your life, and ends at your death. Your worldline is
about 1 foot, front to back; about 2 feet wide; 6 feet tall; and if you
are lucky, maybe 80 years in duration. These are spacetime
diagrams where motionless worldlines intertwine in a static four-
dimensional spacetime sculpture.

We can draw spacetime diagrams of some of the thought
experiments that Einstein proposed on the concept of simultaneity.
Suppose I am sitting in the center of my lab, and it is 30 feet wide.
I’m an Earthling. My lab is stationary with respect to Earth, and I am
stationary in the center of my lab. In the spacetime diagram, the
horizontal coordinate represents space, and the vertical coordinate
represents time. Because I am advancing in time but not moving in
space (left to right, or right to left), my worldline goes vertically
upward. The front of my lab is not moving; it likewise has a vertical
worldline, as does the back of my lab. The worldlines of the back of
the lab, me (the Earthling), and the front of the lab are three parallel
vertical lines. The future is toward the top, and the past is toward
the bottom. The front of my lab is the vertical line to the right, and
the back of my lab is the vertical line to the left. To make the
horizontal and vertical scales, I am going to use units of feet and
nanoseconds. Light moves through empty space at 1 foot per
nanosecond. In the diagram (figure 18.2), light beams will be
diagonal lines tipped at 45° with respect to vertical.
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FIGURE 18.2. Spacetime diagram of my lab and an astronaut’s rocket.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)

Let’s say at time t = 0 (Earth time, ET; shown by the little clock
on my worldline with its hand pointing vertically) I send out two
laser beams, to the right and to the left, which hit mirrors on the
front and back walls, respectively, of my lab. The worldlines of these
two light beams are diagonal lines tipped at 45°. They reach the
front and back of the lab simultaneously (traveling equal distances of
15 feet) at time 15 nanoseconds (ET). Two little 60-nanosecond
clocks each reading 15 nanoseconds (ET) are shown at the points
where the two light beams intersect the front and back walls of the
lab. The Earthling’s (my) worldline also has a little clock on it that



386

reads 15 nanoseconds (ET). A horizontal dashed line connects those
three little clocks reading 15 nanoseconds. That horizontal line
connects simultaneous events according to me. After the laser
beams bounce off the mirrors at the front and back of my lab, they
return to me. And they both arrive back at the same time, 30
nanoseconds after the start. When the laser beams arrive back to
me, my clock reads 30 nanoseconds, because the laser beams
traveling at the speed of light have traveled out 15 feet and back 15
feet, traveling a total distance of 30 feet in 30 nanoseconds. So far,
so good.

But then following Einstein’s argument, consider an astronaut
traveling at 80% of the speed of light in a rocket ship (going from
left to right). The astronaut’s worldline must therefore be tilted. For
every 4 feet to the right he moves, he moves 5 nanoseconds upward
in time. He is traveling at 4/5 (or 80%) of the speed of light. The
front of his rocket is moving at the same speed and has the same
tilt, as does the back of his rocket. The worldline of the back of the
rocket, the worldline of the astronaut, and the worldline of the front
of the rocket are all parallel. They are not moving relative to one
another. Now that astronaut sitting at the center of his rocket sends
laser beams toward the front and back of his rocket, just as I do in
my lab. I measure the length of his rocket to be 18 feet. I will say
more about that later. The light beam he sends to the left hits the
back of his rocket, which starts out 9 feet away (that’s half of
18 feet). I’m watching this experiment through a window of the
rocket. I see the back of the rocket move 4 feet to the right in 5
nanoseconds, while the laser beam travels 5 feet to the left in those
same 5 nanoseconds. Now 4 feet plus 5 feet is 9 feet, so it takes 5
nanoseconds for the astronaut’s laser beam to hit the back of the
rocket, closing that original distance of 9 feet. The astronaut’s laser
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beam hits the back of the rocket at 5 nanoseconds Earth time (ET),
according to me. The laser beam going to the left and the rocket
going to the right are closing on each other and so collide quickly,
according to me (that is, from my viewpoint).

The laser beam that the astronaut sends out to the right has to
catch up with the front end of the rocket, which is moving away, and
therefore it takes longer to catch up and meet it, according to me.
While the laser beam travels 45 feet in 45 nanoseconds (ET;
according to Einstein’s second postulate, light travels at a constant
speed of 1 foot per nanosecond), the front of the rocket travels just
36 feet (or 4/5 of 45 feet). In 45 nanoseconds, the light beam
travels 45 feet, while the rocket travels 36 feet, or 9 feet less, but
the front of the rocket had a 9-foot head start. Thus, the astronaut’s
laser beam hits the front of his rocket 45 nanoseconds (ET) later.
This means that I observe the laser beam that is headed toward the
back of his rocket hitting the back before the other laser beam
headed toward the front hits the front. The events in which the laser
beams hit the front and back of his rocket are not simultaneous,
according to me.

What does the astronaut see? The astronaut is traveling at
constant speed in a constant direction; by virtue of Einstein’s first
postulate, the astronaut is entitled to think of himself at rest. He
does think he is at rest. He sits in the center of his rocket, which is
also at rest with respect to him, and sends out laser beams toward
the front and back of his rocket. Since he sits in the middle of his
rocket and his rocket is not moving, he must think that the two laser
beams traveling at the speed of light must take equal amounts of
time to get to the front and back. From his perspective, he must see
the two events, in which one laser beam hits the back of the rocket
and the other laser beam hits the front of the rocket, as
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simultaneous events. I (the Earthling) do not think they are
simultaneous events: I see the lasers hit in succession—the back of
the rocket gets hit first, then the front. We do not agree on which
events are simultaneous. This is counter to common sense, but it is
a direct result of the postulates of special relativity.

Interestingly, when Einstein formulated this thought experiment,
he did not use an astronaut on a rocket with mirrors at the front and
back of his rocket, but a man on a train with mirrors at the front and
back of the train. In 1905, the fastest vehicles we had were trains—
about 120 miles per hour!

I slice spacetime differently from the astronaut. Think of four-
dimensional spacetime as a loaf of bread. I slice the loaf in slices like
those of American bread. Set a loaf of American bread on its end, so
the individual slices are horizontal. These horizontal slices show
individual instants of Earth time (ET), and each slice of bread
contains simultaneous events according to me. The astronaut slices
spacetime differently. Let us call him Jacques (he is French). He
slices the loaf of spacetime on a slant, like French bread. His slanted
slices measure instants of astronaut time (AT). Jacques and I do not
agree on simultaneous events, that is, on which events we say are in
the same slice. We slice the loaf differently, but we see the same
loaf. According to Einstein, the things that are real are those that are
observer-independent. Space and time as separate entities are not
real. I say the present is a horizontal American-bread slice, but
Jacques says the present is a slanted French-bread slice. Since he is
moving with respect to me, we do not agree on what the present is.
We therefore disagree on which events lie in the past and the future.
But we can agree on the spacetime loaf. It is the entire four-
dimensional spacetime that is real.



389

Now let’s return to my view of Jacques’s rocket. After Jacques’s
laser beam reflects off the mirror at the front of his rocket, it takes
only 5 nanoseconds to get back to him, according to me. I see the
light beam and the astronaut closing on each other. It only takes 5
nanoseconds for the light beam to move back 5 feet, while the
rocket moves forward 4 feet, to close the distance of 9 feet.
According to me, the front laser beam takes a total of 45
nanoseconds + 5 nanoseconds = 50 nanoseconds to go out and
back. The laser beam that has hit the back mirror takes 45
nanoseconds to catch up with the astronaut. To go out and back
takes 5 + 45 = 50 nanoseconds Earth Time (ET), according to me. I
thus see both laser beams return to the astronaut at the same time.
He must also see them returning at the same time, because they
return at the same time and the same place.

I see 50 nanoseconds elapse between when he sent the laser
beams out and when they returned. I see him moving at 80% of the
speed of light (v/c = 0.8), so I must see his clocks ticking at 60%
(or √[1 – (v2/c2)]) of the speed of my clocks. If I see 50
nanoseconds elapse, I must see the astronaut age only 30
nanoseconds. When the astronaut sees his laser beams return, he
must say that that event occurs at 30 nanoseconds astronaut time
(AT), because he is 30 nanoseconds older when they get back. The
laser beams must have hit the front and back of the rocket
simultaneously at 15 nanoseconds AT. Note the French-bread-tilted
slice labeled “15 ns AT.” This connects simultaneous events
according to the astronaut. The astronaut thinks he is at rest, and
the situation looks to him exactly like what I see in the lab on Earth.
Since the laser beams go out and back in 30 nanoseconds according
to him, he must deduce that his rocket is 30 feet long.
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The events where the astronaut’s two laser beams hit the front
and back of the rocket are events that I see as separated in space
by 50 feet and in time by 40 nanoseconds. Using the speed of light
(1 foot per nanosecond) to compare distances in space with
distances in time, I see these two distant events as being separated
by more distance in space than distance in time. Any two events that
I see separated by more distance in space than distance in time
have what we call a spacelike separation. There is always some
astronaut traveling at high speed (but lower than the speed of light)
who will see those two events as simultaneous. He or she will see
those events as having a separation in space but no separation in
time. Einstein showed that what the two observers can agree on is
the square of the separation in space of the two events minus the
square of the separation in time of the two events; we refer to this
quantity as ds2. Using units where the speed of light is 1 (i.e., where
1 foot = 1 nanosecond), I find the separation in space of the two
events to be 50 and the separation in time of the two events to be
40, so I calculate ds2 to be 502 – 402 = 2,500 – 1,600 = 900. The
astronaut Jacques, however, sees the time difference between the
two events to be 0 and the spatial separation between the two
events to be 30 (remember he judges his rocket to be 30 feet long);
but when he calculates ds2, he gets 302 – 02, or 900, just as I do.
We may disagree on both distances and times, yet surprisingly, we
will still agree on some important things.

Consider now the separation between the astronaut’s sending of
the light signal and its arrival at the back of his rocket. The
separation I measure in space between these two events is 5 feet,
and the time between these two events I measure to be 5
nanoseconds. So I calculate ds2 = (separation in space)2 –
(separation in time)2 to be 52 – 52 = 0. The astronaut measures a
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separation in space of 15 feet between the two events and a
separation in time of 15 nanoseconds between the two events, so he
calculates ds2 = 152 – 152 = 0, just as I do. Events connected by a
light ray (called a null separation) always have ds2 = 0 as seen by
any observer. Einstein’s second postulate states that all observers
must see a light beam traveling at a constant speed of 1 in these
units (1 foot per nanosecond); thus, the separation in space must
equal the separation in time, and ds2 must be zero. Indeed, the
minus sign in the ds2 formula connected with the difference in time
is designed to guarantee that the second postulate is always obeyed.

The Pythagorean theorem tells you that in a plane with an (x, y)
Cartesian coordinate system, if two points are separated by
distances dx and dy, then their (separation in space)2 = dx2 + dy2.
The square of the hypotenuse of a right triangle is equal to the sum
of the squares of the other two sides. In three-dimensional space
with x, y, and z Cartesian coordinates, the Pythagorean theorem
generalizes to (separation in space)2 = dx2 + dy2 + dz2. That’s high-
school Euclidean solid geometry. But Einstein is saying that ds2 =
(separation in space)2 – (separation in time)2. Substituting, we find
ds2 = dx2 + dy2 + dz2 – (separation in time)2. But separation in time
is just dt. So substituting for that, we have: ds2 = dx2 + dy2 + dz2 –
dt2. So that’s the difference between the dimension of time t and
any one of the three dimensions of space (x or y or z): there is a
minus sign in front of the dt2. It is that little minus sign that makes
all the difference. That minus sign makes the time we know different
from an ordinary dimension of space—all just to make the speed of
light a constant.

Whew! That’s a lot of arithmetic—but it gets us to an important
point, the difference between time and the dimensions of space.
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Remember that I began by noting that I measured the
astronaut’s rocket to be 18 feet long. So I say that his rocket is
shorter than the astronaut thinks it is (which is 30 feet). I think his
rocket is only √[1 – (v2/c2)] as long as he does. Our clocks do not
agree and our rulers do not agree—once again ensuring that we
observe the speed of light always to be 1 (foot per nanosecond).
How can we differ on the width of the worldline of his rocket? It
results from our taking different “slices” through it. I am measuring
its width at a particular instant of Earth time (ET), and he is
measuring its width at a particular instant of astronaut time (AT). I
am taking a horizontal American-bread slice through his rocket’s
worldline, and he is taking a tilted French-bread slice. To use a
different metaphor, it is as if I were to saw through a tree trunk
horizontally and then say “the trunk is 6 inches wide.” If someone
else saws through it on a slant, he may conclude it is 10 inches
wide, but the trunk itself is the same. We are just making different
cuts through it. The astronaut and I are simply taking different cuts
through the rocket’s worldline.

Why is this important? Take an extreme case where an astronaut
passes by me on Earth traveling at 99.995% the speed of light: then
the magic factor √[1 – (v2/c2)] is 1/100. I see the astronaut fly out
to the star Betelgeuse, 500 light-years away. I will see him take
about 500 years to get there. After all, he is traveling at nearly the
speed of light, and Betelgeuse is 500 light-years away—so it should
take him about 500 years (ET) to get there. I observe him to age
only 1/100 × 500 years, or 5 years, during the trip. I see his clocks
ticking very slowly, because he is moving so fast. Everything he does
looks slow to me—I see him take 100 hours to finish breakfast!
When he reaches Betelgeuse, he will indeed be only 5 years older.
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How does the trip look to him? He thinks he is at rest, and he
sees Earth and Betelgeuse fly past him at 99.995% the speed of
light. First he sees Earth pass him—whish, and then 5 years later, he
sees Betelgeuse pass him—whish. Earth and Betelgeuse are basically
at rest with respect to each other, on parallel worldlines. The Earth +
Betelgeuse system looks to him like a long rocket with Earth at the
front end and Betelgeuse at the back end. Since this rocket is
moving at nearly the speed of light past him, and it takes 5 years to
pass, he must deduce that the length of the Earth + Betelgeuse
rocket is 5 light-years. Thus he must deduce that the distance
between Earth and Betelgeuse is only 5 light-years. He thus judges
the distance between Earth and Betelgeuse to be 1/100 of the
distance I see. He sees my lengths compressed: he sees them to be
1/100 as long as I do. The factor of length compression he observes,
√[1 – (v2/c2)], must be the same as the factor by which I see him
aging more slowly. This is certainly one of the most remarkable
results of special relativity, beautiful in its symmetry and ironclad
logic.

The fact that different observers have different ideas of
simultaneity explains a paradox. Suppose my original astronaut
Jacques, traveling at 80% of the speed of light, is instead a pole
vaulter and carries a 30-foot-long pole with him pointing in the
direction he is going. I will see his pole as only 18 feet long as it
passes me. Suppose I have a barn 30 feet wide. Its front door is
open, and its back door is closed. Jacques comes in the open front
door; when he is in the center of my barn, I can close the front door,
and his 18-foot-long pole will be trapped inside my 30-foot-wide
barn. Then I open the back door and let him go on out the back. But
how does it look to Jacques? He must think he is at rest holding a
30-foot-long pole. He sees my barn traveling toward him at 80% of
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the speed of light; he must think it is only 18 feet wide. When he is
in the middle of my barn, he must see his 30-foot pole sticking out
both the front and the back ends of my 18-foot-wide barn. Both
doors can’t be closed around it simultaneously trapping it inside. It
looks like a paradox. But here is the answer. I close both doors
around the pole at the same time—simultaneously according to me.
But those events are not simultaneous to Jacques. He slices
spacetime differently, on a slant. He sees me close those two barn
doors at different times, one after the other, according to him.
Because he never sees both barn doors closed simultaneously, he
can see his pole sticking out both ends as he passes through the
barn with both doors open.

It is a tribute to Einstein that he was able to work through all his
thought experiments correctly. No one had ever tried doing thought
experiments based on postulates in the way Einstein did. It was one
of the most original features of his work.

Now we come to another apparent paradox, the famous Twin
Paradox. In this paradox, the first twin—we will call her Eartha—
stays home on Earth, while her twin sister Astra voyages to Alpha
Centauri, 4 light-years away, at 80% of the speed of light, then turns
around and comes back at 80% of the speed of light. Eartha sees
Astra going at 4/5 of the speed of light, so she sees Astra taking 5
Earth years to get out to Alpha Centauri, and 5 Earth years to get
back. When Astra gets back, Eartha is 10 years older. Because
Eartha sees Astra moving at 80% of the speed of light, according to
our formula √[1 – (v2/c2)], Eartha must see Astra aging slowly, at
60% of the rate Eartha ages. When Astra returns, Eartha expects
Astra to have aged only 6 years. So far so good. But what does Astra
see? Since motion is relative, why doesn’t Astra think Eartha has
gone away and come back at 80% of the speed of light, and why
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doesn’t she expect Eartha to be the younger one when Eartha
returns? The answer is that Astra has accelerated during her trip;
she has slammed on the brakes at Alpha Centauri to stop and start
back. All her stuff would have hit the front windshield of her
spacecraft. She has changed her velocity; she has reversed its
direction. She no longer obeys the first postulate’s requirement for
an observer to be in uniform motion in the same direction without
turning (figure 18.3.)
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FIGURE 18.3. The Twin Paradox spacetime diagram of twins Eartha and Astra.
Eartha stays home. Her worldline is straight. Astra goes to Alpha Centauri and
returns—her worldline is bent. Astra ages less than Eartha does. Clocks show time



397

measured by each in years. Dashed lines show Eartha Time (ET) and Astra Time
(AT).
Credit: J. Richard Gott

During the first half of her trip, Astra is traveling away from
Earth, and slices of Astra Time (AT) are tilted like slices of French
bread. Just as she is arriving at Alpha Centauri, her clock reads 3
years (AT), telling her how much she has aged. But the line of
simultaneous events “3 AT” is tilted, so it intersects Earth only 1.8
years after the start. As she is arriving at Alpha Centauri, Astra
thinks she is simultaneous with Eartha 1.8 years after the start.
Astra says she has aged 3 years in the time Eartha has aged only
1.8 years. Now 1.8 years is 60% of 3 years. Therefore, Astra sees
Eartha aging slowly, since Astra thinks of herself at rest and sees
Eartha receding from her at 80% of the speed of light. At this point,
Astra thinks Eartha has aged less. But wait! Now Astra slams on the
brakes, stops, and reverses course. Astra’s worldline is bent at this
point. She has changed velocity, and therefore her notion of
simultaneity changes radically as well. Just as she is leaving Alpha
Centauri, her clock still reads “3 AT,” but now, because she is moving
in the opposite direction, the slice “3 AT” marking simultaneous
events is tipped in the opposite direction and intersects Earth 8.2
years after the start. Once she is on the way back, Astra thinks that
her departure from Alpha Centauri is simultaneous with Eartha being
8.2 years older than at the start. During the trip back, Astra sees
Earth age another 1.8 years while she, Astra, ages another 3 years.
That makes Eartha a total of 8.2 + 1.8 = 10 years older than at the
start, while Astra is 3 + 3 = 6 years older than at the start. So Astra
agrees with Eartha, as she must, that Astra is younger than Eartha
when they meet again. Eartha has traveled on a straight worldline,
whereas Astra’s worldline is bent. This is the solution to the Twin
Paradox. The idea of simultaneity is very important here.
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The Twin Paradox enables you to visit the future. If you want to
visit Earth a thousand years from now, all you have to do is get on a
rocket ship and travel at 99.995% of the speed of light out to the
star Betelgeuse, 500 light-years away. Your clock ticks 1/100 as fast
as one on Earth. It will take you 500 years to get there, according to
clocks on Earth. But you will only age 5 years. Come back at
99.995% the speed of light and you will age another 5 years on the
way back. But when you get back, you will find Earth 1,000 years
older. You will have time-traveled into the future. A trip such as this
would be a lot more expensive than the current NASA budget (!),
and of course the technology for building such a fast spacecraft
doesn’t exist yet, but we know it is possible under the laws of
physics. We send protons in our particle accelerators at speeds
faster than this, so we know such speeds are possible. It’s just a
matter of money and engineering—NASA, take note.

You might complain that the high acceleration at the turn-around
point would kill you. But it turns out that you can arrange the same
trip with only a comfortable 1 g acceleration, such as you experience
on the surface of Earth. Your feet would be pressed to the floor,
because your rocket was accelerating, just as they are pressed to
the floor now because of gravity. Your trip would take you longer this
way, but it would be comfortable. You would accelerate outward
toward Betelgeuse for 6 years and 3 weeks of spaceship time,
reaching a peak velocity of 99.9992% the speed of light. At that
point, you are halfway to Betelgeuse. Then you decelerate at 1 g for
another 6 years, 3 weeks of spaceship time to bring yourself to a
halt at Betelgeuse. Accelerate back toward Earth for 6 years, 3
weeks, and finally decelerate for another 6 years, 3 weeks to bring
yourself to a stop at Earth. You will age 24 years, 12 weeks during
the trip, but when you get back, Earth will be 1,000 years older. You
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just have to invest a little more of your time (24 years versus 10
years) to do it comfortably. It took Marco Polo 24 years to make his
famous visit to China and return to Europe. You would just need to
invest as much of your time in your trip as Marco Polo did in his, and
you could visit the future. You could visit Earth a millennium from
now.

Gennady Padalka, a Russian cosmonaut, is our greatest time
traveler to date. By orbiting Earth at high speed for a total of 879
days during visits to the Russian space station Mir and the
International Space Station, he aged 1/44 of a second less than he
would have if he had stayed home. (This calculation also includes
some smaller general relativity effects due to his high altitude.)
When he returned, he found Earth 1/44 of a second to the future of
where he expected it to be. He has time traveled 1/44 of a second
into the future. I know you’re laughing. It’s not a big trip, but it is a
trip into the future. I was once interviewed on National Public Radio,
and they asked why it was so easy to travel in space and so difficult
to travel in time. I replied that the truth is we have not gone very far
in space either! Einstein showed us that when comparing distances
in space with distances in time, we should use the velocity of light.
Thus, astronomers know to say that Alpha Centauri is 4 light-years
away, because it takes light 4 years to come from it to us. The
farthest our astronauts have gone is to the Moon. The Moon is only
1.3 light-seconds away. Humans have traveled as far as 1.3 light-
seconds in space, and have time traveled 1/44 of a second into the
future. These are roughly comparable.

Interestingly we have actual identical twin astronauts today to
illustrate the twin paradox. Mark Kelly has spent 54 days in low Earth
orbit, while his identical twin brother Scott Kelly has spent 519 days
in low Earth orbit. Because Scott spent more time traveling at high
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speed in low Earth orbit, he is now about 1/87 of a second younger
than his twin brother Mark.

I have pointed out that if we sent an astronaut to the planet
Mercury and she lived there for 30 years before returning to Earth,
she would be about 22 seconds younger than if she had stayed
home. Clocks on Mercury tick more slowly than those on Earth both
because Mercury circles the Sun at a faster speed (a special relativity
effect) and because Mercury is deeper in the Sun’s gravitational field
(a general relativity effect). 1

In 1905, Einstein showed that time travel to the future was
possible. This is just 10 years after H. G. Wells proposed the idea, in
1895, in his book The Time Machine. In Newton’s laws of physics,
you could forget it—everyone agreed on time, everyone agreed on
what “now” was, and time travel to the future was impossible. But
Einstein showed that observers did not always agree on what was
happening “now”; time was flexible—moving clocks ticked more
slowly. Einstein gave us an entirely new picture of the universe, a
universe with three dimensions of space and one dimension of time.

Now I am going to derive Einstein’s famous equation E = mc2.
Suppose you had a laboratory with a particle moving slowly from left
to right inside it with velocity v much, much less than c (i.e., v <<
c). Newton’s laws will apply, and if the particle has a mass m, it will
have, according to Newton, a momentum P = mv pointed toward
the right. The particle gives off two photons each of energy E = hν0

in opposite directions: one to the right and one to the left. We are
using Einstein’s famous equation for the energy of photons, where h
is Planck’s constant and ν0 (Greek letter nu) is the frequency of the
photons as measured by the particle. The particle loses an amount
of energy ΔE = 2hν0, equal to the energy the particle sees carried
off by the two photons. Einstein showed that photons carry not only



401

energy but momentum. The momentum of a photon is equal to its
energy divided by the speed of light c. The particle sees the two
photons carry away equal amounts of momentum but in opposite
directions, making the total momentum carried off by the two
photons zero as seen by the particle. The particle “thinks” it is at
rest (by the first postulate), and it gives off two equal photons in
opposite directions. By symmetry, a particle at rest that gives off two
equal-frequency photons in opposite directions stays at rest. The
recoils from the two photons on the particle cancel out. The
particle’s worldline remains straight: it does not change in velocity
(figure 18.4).
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FIGURE 18.4 Spacetime diagram of E = mc2 thought experiment. Stationary
walls of the lab have vertical worldlines. The particle moves from left to right with
velocity v, its worldline is tipped. It emits a photon to the left (whose wave crests
move at 45° to the upper left) and an equivalent photon to the right (whose wave
crests move at 45° to the upper right). The lab time between the particle’s
emission of the two sets of wave crests is Δt', shown by the vertical dashed line.
In that time the first leftward wave crest moves a distance cΔt' to the left, while
the particle moves a distance v Δt' to the right as shown. The wavelength
(distance between wave crests) of the leftward-moving photon is shown: λL = (c



403

+ v)Δt'. The wavelength of the rightward-moving photon is shorter: λR = (c –
v)Δt' due to the Doppler shift. Credit: J. Richard Gott

Now consider what happens to those two photons. The one
going to the right will eventually slam into the right wall of the lab. It
hits the wall, and the wall is pushed a tiny bit toward the right.
Einstein showed that a photon carries a momentum equal to its
energy divided by the speed of light. This is the effect of radiation
pressure: the wall absorbs the momentum of the photon, and this
pushes the wall to the right. An observer sitting on the right wall will
see the photon headed to the right hitting the right wall with a
frequency that is higher than the emitted frequency, because the
particle is approaching the right wall. This is an instance of the
Doppler effect, which you will recall from previous chapters. In
contrast, an observer sitting on the left wall of the lab will see a
redshifted photon traveling to the left hit the left wall with a lower
frequency than emitted, because the particle is going away from
him. A higher frequency (bluer) photon carries a larger momentum
than a lower frequency (redder) photon does. So, the right wall
receives a harder kick (to the right) than the left wall receives (to
the left). The two kicks do not cancel out, and the lab receives an
overall kick to the right. The lab has received some momentum.
There must be conservation of momentum, as Newton supposed
(otherwise one could construct various unphysical levitating
devices!), and therefore, this momentum must come from
someplace. The only place it can come from is the particle itself.

Now the velocity of the particle is v << c, so the momentum of
the particle should be given by Newton’s formula: mv. Since the lab
has gained momentum, the particle must have lost momentum. But
the particle’s worldline is not bent—it remains straight (see
spacetime diagram in figure 18.4). Its velocity does not change. If
the particle’s momentum mv decreases while its velocity v remains
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the same, its mass m must have decreased. It gave up some energy
(in the form of two photons) and it lost some mass. Some of its
mass was turned into energy! Whoa! That’s a remarkably bold
conclusion. What is the relation between the amount of energy given
off and the amount of mass lost? This just requires you to calculate
the Doppler shifts of the two photons. The total rightward
momentum gained by the walls of the lab is 2hν0(v/c2). I show the
full calculation of these in appendix 1. The energy given off by the
particle in the form of the two photons is ΔE = 2hν0, so the total
rightward momentum gained by the walls is ΔE(v/c2). The factor
v/c2 comes from a factor v/c due to the Doppler shifts and a factor
of 1/c due to the ratio of momentum to energy carried by photons.
The total rightward momentum gained by the walls, ΔE(v/c2), in
turn, must equal the momentum lost by the particle: (Δm)v. So we
have ΔE(v/c2) = (Δm)v. Divide both sides of the equation by v. (The
velocity of the particle cancels out!) We get ΔE/c2 = Δm. Now
multiply both sides of the equation by c2. That gives ΔE = Δmc2. Get
rid of the Δ signs. The answer is E = mc2.

In the thought experiment, the particle loses some energy by
emitting two photons, and it loses some mass. A particle that loses
mass emits energy. The emitted energy is related to the mass that is
lost by the formula E = mc2. It’s as simple, yet as powerful, as that.
The c2 appears in the equation because all the Doppler shift and
momentum calculations involve light, and c is its speed.

As you know, c is a very large number (300,000 km/sec in
ordinary units), enabling a tiny amount of mass to be converted into
a huge amount of energy. Newton’s laws show us that the kinetic
energy of a truck is ½mv2, where m is the mass of the truck, and v
is its velocity. That’s accurate as long as v << c. A truck going at a
velocity of 100 miles per hour has a velocity of 0.045 km/sec (that’s
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only 0.00000015c). If two trucks each going 100 miles per hour
collide head on, all that kinetic energy—2 times (½ mv2)—will be
released in a giant explosion. Pieces of the trucks will fly all over. But
now suppose a truck made of matter would hit a truck made of
antimatter. These two trucks would annihilate each other, converting
all their mass into energy—an extreme case. That would cause an
explosion releasing 2 × (mc2) worth of energy, which is a lot bigger
than mv2 for the normal trucks. How much bigger? By a factor of
2/(0.00000015)2 = 89 trillion! That matter–antimatter explosion
would be 89 trillion times as energetic as the explosion caused by
two normal trucks hitting each other at 100 miles per hour. There is
a tremendous amount of energy locked up in the mass of ordinary
matter.

That is the secret of the atomic bomb. Uranium or plutonium
atoms can fission to create decay products that weigh slightly less
than the original atoms, releasing an enormous amount of energy. In
the Sun, four hydrogen nuclei fuse to become one slightly lighter
helium nucleus, releasing energy. This is what has powered the Sun
for the past 4.6 billion years. Chemists have measured accurate
masses for different elements, which show slight differences in the
mass per nucleon in different elements. Consequently, one can
calculate how much nuclear energy could be produced by fusing
light elements or by splitting heavy ones. Iron has the lowest mass
per nucleon—there is no getting nuclear energy out of it, as we
discussed in chapter 7.

Einstein realized, along with other physicists, that his equation
implied that atomic bombs, from splitting atoms, could be made, and
he wrote the crucial letter to President Franklin D. Roosevelt on
August 2, 1939, urging him to build an atomic bomb before Hitler
did. Thus, the Manhattan Project was born, and American and
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European refugee physicists developed a working atomic bomb. As
the Americans later learned, Germany did have an atomic bomb
program just as Einstein had feared, but it was ineffectual and did
not succeed. Germany had already surrendered by the time the first
U.S. atomic bomb was tested in New Mexico. But ultimately, two
atomic bombs were dropped on Japan. Japan surrendered a short
time later, ending World War II. The devastation was horrendous:
approximately 200,000 people were killed by the bombs and their
aftermath, including radiation exposure. Robert Oppenheimer, who
led the Manhattan Project, later said the first test of the atomic
bomb reminded him of lines from the Bhagavad Gita: “now I am
become Death destroyer of worlds.” President Truman took full
responsibility for the decision to drop the bomb. He felt its use was
necessary to end World War II as swiftly as possible. But Truman
said, “I realize the tragic significance of the atomic bomb.” Years
later, in Truman’s private library, a book on the atomic bomb was
found where he had underlined words from Horatio’s last speech in
Hamlet: “Let me speak to the unknowing world. So shall you hear of
carnal, bloody and unnatural acts, of accidental judgments, casual
slaughters, of deaths put on by cunning and forced cause, and, in
this upshot, purposes mistook fall’n on the inventors’ heads.” After
the war, Einstein devoted himself to the cause of nuclear
disarmament.

By thinking about traveling near the speed of light, which was far
from practical in his day, Einstein nevertheless discovered a principle
that would change the course of history. Einstein’s work in his
miracle year of 1905 would catapult him into the first rank of
scientists, along with Marie Curie and Max Planck, but his greatest
work was yet to come.
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19
EINSTEIN’S GENERAL

THEORY
OF RELATIVITY

J. RICHARD GOTT

Einstein’s greatest scientific achievement was general relativity, his
theory of curved spacetime to explain gravity, which has replaced
Newton’s theory of gravity.

Einstein was considering the following problem. Drop a heavy
and a light ball simultaneously—they fall and hit the floor at the
same time. Galileo knew this. What would Newton say? He would
say that the gravitational force between the ball and Earth was F =
Gmball MEarth/rEarth

2. He would also say F = mballaball, so the
acceleration, aball, of the ball was the force on the ball divided by its
mass. Combining the equations, we get aball = GMEarth/rEarth

2. The
mass of the ball cancels out. The acceleration of the ball is
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independent of its mass, which means that heavy and light balls
must fall at the same rate. Newton would say that the heavy ball
had a larger gravitational force pulling it toward Earth. But he would
say that it was harder to accelerate because of F = ma, and this
would just compensate for the bigger force such that the
acceleration of both balls was exactly the same. That’s quite a
coincidence, and is a statement that the mass we use in the
gravitation formula (the gravitational mass) and the mass we use in
the F = ma formula (the inertial mass) are identical.

Einstein thought about the problem differently. He considered
what would happen if you were in an accelerating spaceship in
interstellar space where there was no gravity. (Like the accelerating
matter-antimatter powered interstellar spaceship Neil discussed in
chapter 10.) If you drop the two balls, they just float weightless next
to each other. Then, because the spaceship is firing its rockets and
accelerating upward, the floor of the spaceship cabin just accelerates
upward and hits the two balls floating there. The balls automatically
hit the floor at the same time. They just float in place, and it’s the
floor that comes up and hits them. Simple. Now it is not a
coincidence that the two balls hit at the same time. Imagine
dropping the two balls again on Earth. This time try to imagine them
just floating together in place and the floor coming up to meet them.
People knew that on an accelerating spaceship it would seem like
you were back home on Earth. But Einstein said, if the experiment
on an accelerating spaceship looked just like gravity, then it must be
gravity. He called this the Equivalence Principle. He called this his
happiest idea, and 1907 was the year it came to him. If the two
different phenomena looked exactly the same, they must be the
same. This was very bold.
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Einstein had used this reasoning before. A charge moving past a
magnet was accelerated by a magnetic field, but a stationary charge
experienced the same acceleration when a magnet was moved past
it. In the second case, according to Maxwell’s equations, the
acceleration was produced by an electric field generated by the
changing magnetic field. Einstein deduced that the two phenomena
must be identical, and that it was only the relative motion that was
important. This meant that the notions of electric and magnetic
fields as separate entities needed to be replaced by a notion of one
electromagnetic field. In the same way, Einstein found that our ideas
of space and time as separate should be replaced with the idea of
four-dimensional spacetime. Often a great breakthrough in science
occurs when someone realizes that two different things are actually
the same. Newton realized that the same force that makes the apple
fall is what keeps the Moon in its orbit. Aristotle knew that gravity
made an apple fall to Earth, but he assumed that something
different, something celestial, kept the Moon in its orbit. Newton
realized that the two phenomena were the same.

Einstein had great faith in his idea of the Equivalence Principle. If
you dropped a heavy and a light ball, they just floated together in
free fall and Earth’s surface accelerated upward to hit them at the
same time. The only trouble was that it didn’t seem to make sense.
How could Earth’s surface be accelerating upward everywhere if it is
not getting bigger? If it were expanding like a balloon, it could be
plowing into those balls we drop, but Earth is not getting any bigger,
so the idea appears to make no sense. This could only make sense if
one had curved spacetime, where the laws of Euclidean geometry do
not apply.

Let’s discuss curvature. Figure 19.1 shows a globe of Earth. Its
surface is curved, and therefore the laws of Euclidean plane
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geometry don’t apply on its surface. Euclid tells us that, on a plane,
the sum of angles in every triangle is 180°. On the globe, the
straightest line you can draw is a great circle route—it’s the shortest
distance between two points. A great circle is a circle on the globe
whose center is at the center of the globe. Earth’s equator is a great
circle. A meridian of longitude is a great circle. The shortest distance
from New York City to the North Pole traces the meridian of
longitude connecting New York City to the North Pole. On the globe
we can make a triangle connecting the North Pole with two points on
the equator that are 90° apart in longitude, and we will form a
triangle (made up of great circle routes) that has three 90° angles,
for a total of 270°.

If you go south from the North Pole, when you get to the first
point on the equator, you will have to turn 90° to start going west
along the equator. Then you have to turn 90° again when you get to
the second point on the equator, to head due north and return to the
North Pole. When you arrive, you will see that the two sides of the
triangle meeting at the Pole make another 90° angle, because they
are two meridians of longitude separated by 90°. You have traced a
triangle with three right angles, impossible in Euclidean plane
geometry. The surface of the sphere is curved and does not behave
like a flat Euclidean plane.
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FIGURE 19.1. Triangle with three right angles on a sphere.
Photo credit: J. Richard Gott

Imagine drawing a circle on the globe centered at the North Pole.
Make the radius of the circle measured along the surface of the
globe equal to the distance from the Pole to the equator (that’s 1/4
of the circumference of Earth). The circumference of your circle
(centered on the North Pole) will be the equator. The equator has a
length equal to the circumference of earth, and so the radius of the
circle you have drawn must be 1/4 of the length of the
circumference. Therefore, in this case, the circumference of your
circle is 4 times its radius or less than 2π times the radius you would
expect from Euclidean geometry. Again, we find that the curved
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surface of the sphere does not obey the laws of Euclidean plane
geometry.

Einstein thought about a spinning phonograph record. If an ant
stood on the phonograph record, it would have to hold on tightly to
stay on. It would need to produce a centripetal acceleration (by
holding on tightly) to keep it on the record, and it would feel a
“gravitational” force pulling it outward. Certain carnival rides can
give you this effect; they are like being inside a spinning tin can, and
you feel a g-force pushing you against the cylindrical wall. You can
even lift your feet off the floor. In both cases, the spinning record
and the spinning carnival ride, accelerated circular motion mimics
gravity, just like an accelerating spaceship does. We expect the
phonograph record to be flat. But Einstein knew that, because the
outer edge of the phonograph record is moving rapidly, measuring
rods placed on it would have a different length if measured by
observers sitting on the rotating edge of the record than they would
if measured by someone sitting still at the center. The record’s
circumference as measured by observers on the rotating record
should differ from 2π times the radius, the value we expect from
Euclidean plane geometry. The geometry of a rotating phonograph
record would be non-Euclidean (it would have curvature) precisely
because it was rotating, Einstein deduced, and gravity would be
simulated. If such simulated gravity is gravity (that’s Einstein’s
Equivalence Principle), then curvature of spacetime could itself
create gravity.
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FIGURE 19.2. Great circle route on a globe, connecting New York City and Tokyo.
Photo credit: J. Richard Gott

If I’m in New York City and I want to go to Tokyo, I should go on
a great circle route, the shortest possible path. I can stretch a string
tight between the two cities on a globe. The great circle route goes
through northern Alaska (figure 19.2). Get a globe and try it
yourself. That’s the route an airplane would take. It is also the
straightest possible path between the two cities. You can
demonstrate that by taking out a little toy truck and driving it on the
globe between the two cities. The wheels are aimed straight ahead
on the toy truck; if it heads out in the right direction on the path to
Tokyo, it can simply drive straight ahead on the great circle route,
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pass through northern Alaska, and arrive at its destination. We call
this straightest possible path a geodesic. Start a truck traveling west
on the equator, drive it straight ahead, and you will trace out the
entire equator. Starting out in any direction, if you drive straight and
never turn your steering wheel, you will follow a geodesic route. If
you look at a flat Mercator map of Earth, the geodesic great-circle
path linking New York and Tokyo looks curved. Because both cities
are at about 40° latitude, it might seem from the Mercator map that
the best way to get to Tokyo would be to go west along a circle of
latitude. But that path is actually longer on the globe. It is also not
straight. A circle of latitude is a small circle on the globe; its
circumference is less than that of the equator, and its center (inside
Earth) lies north of Earth’s center. It is not a great circle. The U.S.
border with Canada out west (past the Great Lakes) is a segment of
such a small circle. If you drove a truck along that border going
east, you would have to turn your steering wheel slightly to the left
as you drove along to stay on the path. On a flat map of Earth,
depending on what coordinate system it has, a straight geodesic line
can end up looking curved.

Throw a basketball up into a basket, and it will arc up and then
down as it goes into the basket. It seems to take a curved path—a
parabola. Its path may appear to be bent by several feet. It is bent
just like the geodesic route from New York to Tokyo is bent on a
Mercator map. Einstein’s idea was that objects in free fall like the
basketball would travel along geodesics in curved spacetime, along
the straightest possible trajectories they could possibly follow (as
long as they were not acted on by any other forces, like
electromagnetic forces). The marching orders for a particle were
simple—just go straight ahead. The particles did not add up a bunch
of forces from different masses all pointing in different directions, as
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Newton would have it. They just flew straight ahead. Spacetime was
curved, and this curvature created gravity. Recall the spacetime
diagram in figure 18.1 with the Sun’s worldline as a vertical rod and
Earth’s worldline as a helix winding around it. It is actually a rather
tall helix. It is 8 light-minutes in radius and has a 1 light-year-tall
segment between turns. Einstein’s idea is that the mass of the Sun
slightly curves the spacetime around it, so that the helical worldline
of Earth is actually following the straightest possible trajectory
through that curved spacetime, like the truck driving straight to
Tokyo. Earth’s worldline may look bent in the coordinate system of
figure 18.1, but actually, it is the straightest possible geodesic path
in the curved spacetime. If you knew what that curvature looked
like, you could calculate the geodesic path that Earth would take
around the Sun.

This is how Einstein is going to explain gravity. Newton would say
that if you took two masses and set them at rest in interstellar
space, they would start accelerating toward each other because of
their gravitational attraction, and they would eventually hit each
other. Newton would say this is because they exert forces on each
other at a distance, and these forces pull them together. Einstein
says that the two masses cause the spacetime around them to be
curved. In that curved geometry, the two particles simply travel on
the straightest possible trajectories they can, which brings them
together.
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FIGURE 19.3. Trucks traveling due north, drawn together by the curvature of the
globe, hit at the North Pole. Photo credit: J. Richard Gott

Suppose you have two trucks located some distance apart on the
equator, both headed north (figure 19.3 at bottom). They start out
on parallel trajectories, neither approaching nor separating from
each other initially, but they don’t stay on parallel trajectories,
because Earth’s surface is curved. Let the two trucks both travel
straight north on adjacent meridians of longitude (which are
geodesic trajectories). They are traveling parallel initially, both
headed north, but as they keep heading north, going straight along
separate meridians of longitude, they will find themselves drifting
toward each other. Eventually they will collide at the North Pole.
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Einstein is saying that the masses of particles cause a curvature
of spacetime like the curvature of Earth. The direction “north”
represents the direction of time toward the future. The lines of
longitude they travel along represent the worldlines of the two
particles. These straightest possible worldlines of the two particles
are drawn together because of the curvature of spacetime. Notice
that if you started off the two trucks on parallel paths on a flat
desktop, they would continue to travel parallel to each other, and
their geodesics would remain the same distance apart. Gravitational
attraction is caused by curvature of spacetime in Einstein’s theory.

Mass and energy cause spacetime to curve—but how? Einstein
started to work on this idea. He asked one of his mathematician
friends, “Am I going to have to learn about Riemann curvature
tensors?” The friend said, “Yes, I’m afraid you are.” Bernhard
Riemann had worked out the theory of curvature in many
dimensions. Riemann was starting on the equivalent of a PhD thesis,
under the supervision of Carl Friedrich Gauss. Gauss was a great
mathematician who had worked out the theory of curvature
(Gaussian curvature) on two-dimensional surfaces, such as the
surface of Earth. Gauss told Riemann to suggest three possible
thesis topics. Riemann’s third favorite topic was curvature in higher
dimensions. Gauss said “work on that.” Riemann did, and it was a
tour de force. Riemann showed that to understand curvature in
many dimensions, you needed something we now call the Riemann
curvature tensor: Rα

βγδ. In four dimensions, this was a mathematical
monster containing 256 components. 1 Luckily, many of these
components were the same, effectively reducing the number to only
20 independent components—still a lot. This is the mathematical
creature Einstein had to master. Einstein wanted to come up with
field equations for the gravitational field that were precisely
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analogous to Maxwell’s field equations for electric and magnetic
fields. How do energy and mass curve spacetime? What geometries
are possible? He wanted his theory to answer these fundamental
questions, but it also had to agree approximately with Newton’s
theory for low velocities and small amounts of curvature, because
Newton’s theory worked pretty well under these conditions.

Einstein worked on this problem from 1907 to 1915. It required
very difficult mathematics. He had many false leads. But he never
gave up. Finally, in late 1915, he arrived at the correct field
equations. Here they are (in appropriate units where Newton’s
constant G and the speed of light c are set equal to 1), just so you
can see what they look like: Rμν – ½gμν  R = 8πTμν. The right side of
the equation represents the “stuff” (mass, radiation, etc.) at a
location in spacetime, and the left side of the equation tells how
spacetime is curved at that location. 2 The stuff in the universe tells
spacetime how to curve. Einstein had gotten rid of Newton’s
mysterious “action at a distance.” The stuff of the universe (matter,
radiation) at a location caused spacetime to curve in a certain way at
that location. Particles, and planets also got their marching orders
locally—they just went straight ahead in the curved spacetime.
Deriving these equations was very tough going. At first, Einstein
thought the correct equations were Rμν = 8πTμν. He was missing a
term. Interestingly, these equations were correct for empty space.
Empty space is devoid of stuff, so Tμν = 0 in empty space, Einstein
reasoned. Einstein thus deduced that Rμν = 0 for empty space as
well. But if Rμν = 0 for empty space, R (which is calculated from the
components of Rμν) would also be zero, and the correct field
equations of 1915 with the extra term –½ gμν  R would also be
satisfied, because the extra term would be zero in the case of empty
space as well. Even though Einstein had the wrong field equations at
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first, luckily they were correct for the case of empty space. A week
later, he figured out that he needed to add this extra term –½ gμν  R
to ensure local energy conservation. Local energy conservation
demands that the only way the total mass-energy in a room can go
up is if something comes in the door. This is a very nice property for
the equations to have. It’s just like when Maxwell found he had to
add a term to his equations to produce charge conservation, an
extra term that in Maxwell’s case led directly to the famous result
that light was electromagnetic waves.

Einstein did some calculations using his field equations. He
calculated the curvature expected in the empty space around the
Sun. He could then calculate the geodesic representing the helix for
a planet’s worldline. He found that, in general, planets in curved
spacetime did not follow simple elliptical orbits as Kepler predicted,
but ellipses that were precessing (i.e., slowly rotating). They did not
retrace the same ellipse over and over; instead the ellipse for each
planet slowly rotated. For most planets far from the Sun, the effect
was tiny, but for Mercury, which orbited closest to the Sun where the
curvature was greatest, the effect was measurable. Einstein
calculated that its elliptical orbit would precess, or rotate, by 43
seconds of arc per century. Eureka! That was equal to the
unexplained precession in the orbit of Mercury, something
astronomers had measured, which Einstein knew about and which
Newton couldn’t explain.

Einstein was so excited doing this calculation that he said it gave
him palpitations of the heart. His equations had given the right
answer—43 seconds of arc per century—nature had spoken. He did
this calculation on November 18, 1915. At that time he was using
the incorrect field equations Rμν = 8πTμν but luckily, in the specific
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case of the empty spacetime around the Sun, they were actually
perfectly good.

On the same day, he calculated the bending of light beams
passing near the Sun. He calculated the geodesic path that light
would take in the curved empty spacetime around the Sun. The
answer he got said that a light beam from a distant star passing
near the limb of the Sun on its way to Earth would be deflected by
1.75 seconds of arc. This was twice the amount Newton would have
calculated if he had thought that light was made up of little massive
bullets traveling at 300,000 km/sec. Newton would have calculated a
deflection of 0.875 seconds of arc. But maybe light was not made of
massive particles, so in Newton’s theory it was also possible that
light was not deflected at all. Einstein had no choice, however: light
had to travel on geodesics and had to be deflected by 1.75 seconds
of arc. This deflection could be observed. How could you observe
stars near the limb of the Sun? You had to wait for a solar eclipse,
when the Moon just blocked out the bright light from the solar
surface. You could measure the star positions on a photographic
plate during the eclipse, and then measure again 6 months later,
when Earth was on the other side of the Sun and the Sun was far
away from those stars, and compare the two photographs for
differences in positions. Close to the edge of the Sun, the stars
should be shifted by 1.75 seconds of arc, according to Einstein’s
equations. Einstein proposed this as a test to be done during a solar
eclipse.

Einstein was lucky in this regard. Earlier, before he had his field
equations, he had made a qualitative argument using the
Equivalence Principle’s accelerating spaceship argument. A straight
horizontal light beam in interstellar space would look bent in the
accelerating spaceship, because a straight horizontal light beam
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would eventually hit the floor as the spaceship accelerated upward
to hit it. By this analogy, he argued, light ought to be bent by
gravity. The argument correctly accounted for the curvature in time,
but left out the curvature in space required by the full field
equations, and so Einstein only got half of the correct answer. He
got a deflection of 0.875 seconds of arc, just as Newton would have
done. Einstein published this and suggested people look during the
eclipse of 1914. But World War I broke out, and the expeditions
never made the observations. Lucky for Einstein. By 1915, he had
the correct answer of 1.75 seconds of arc for curved spacetime, and
this differed from what Newton would predict. If a deflection of 1.75
seconds of arc were observed, Einstein would be right and Newton
would be proven wrong. If 0.875 seconds of arc deflection were
observed, Newton would win and Einstein would be wrong. If no
deflection were observed, Einstein would be wrong, but Newton
could still be right, because he might say that mass attracts mass,
but mass does not attract light. Newton would still be in business, in
that event. Here was a decisive test. Einstein’s calculation of the
precession of Mercury was a postdiction. It explained an already
known experimental fact, unaccounted for by Newton. But in this
case, he was making a prediction—much more dramatic.

Two British expeditions were mounted to observe the May 29,
1919, solar eclipse. One observed from Sobral, Brazil, and the other
from Príncipe Island off the coast of Africa. Sir Arthur Eddington
reported the results at the combined Royal Society and Royal
Astronomical Society meeting in London on November 6, 1919. From
Sobral a deflection of 1.98 ± 0.30 seconds of arc was observed,
while from Príncipe a deflection of 1.61 ± 0.30 seconds of arc was
observed. Both results agreed with Einstein’s value of 1.75 seconds
of arc to within the observational errors of ±0.30 seconds of arc,
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and both disagreed with Newton. Nobel Prize winner J. J. Thompson,
discoverer of the electron, chaired the meeting, and pronounced:
“This is the most important result obtained in connection with the
theory of gravitation since Newton’s day . . . the result [is] one of
the highest achievements of human thought.”

The next day Einstein was in the London Times under the
headline “Revolution in Science.” Two days later, he was in the New
York Times. This was the moment Einstein moved up from being one
of the greatest scientists of his day to being the world-famous
person you know. This is the moment he joined the company of
Isaac Newton.

The light bending results of Eddington were soon independently
confirmed with higher accuracy by W. W. Campbell and R. Trumpler,
observing a 1922 eclipse from Australia. They found a deflection of
1.82 ± 0.20 seconds of arc, again consistent with Einstein’s
prediction of 1.75 seconds of arc.

Einstein said of his travails, while struggling from 1907 to 1915 to
work out his theory: “But the years of anxious searching in the dark
for a truth that one feels but cannot express, the intense desire and
the alternations of confidence and misgiving until one achieves
clarity and understanding, can be understood only by those who
have experienced them.” 3
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20
BLACK HOLES

J. RICHARD GOTT

This chapter is about the most mysterious objects in the universe,
black holes. One of the first exact solutions obtained for Einstein’s
equations of general relativity corresponded to a black hole. An
exact solution to Einstein’s equations is a spacetime whose geometry
has a curvature at each point that solves the equations locally at
each point. Of particular interest is the solution for the geometry of
the empty space around a point mass. This is called a solution to the
vacuum field equations, because they apply in empty space. These
were exactly the equations Einstein was trying to solve when he
worked out the orbit of Mercury and the light bending around the
empty space near the Sun. But this solution was difficult to find,
because one had no idea what the geometry of the solution would
be like, so Einstein settled for an approximate solution. In his
approximate solution, spacetime was approximately flat, just as in
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special relativity, but with small perturbations (departures from
flatness). The equations for the small perturbations were easier to
solve, because one knew that one had a flat geometry to start with
and with that as a starting point, the equations for the small
corrections were easier to solve. Since the velocities of objects
orbiting the Sun are small with respect to the speed of light, the
geometry around the Sun is only slightly curved. Thus, Einstein’s
approximate solution is quite accurate, as are his values for
Mercury’s orbit and the bending of light near the Sun. Perhaps
Einstein thought that solving the equations exactly would be too
difficult. In any case, he contented himself with an approximate
solution.

The first person to find an exact solution to Einstein’s field
equations for the empty space around a point mass was the German
astronomer Karl Schwarzschild. What he found was the solution for a
black hole, that is, a point source of mass in otherwise empty space.
When Einstein published his work on general relativity, he estimated
that there were only 12 people in the world who could understand it.
Karl Schwarzschild was one of them. In 1900, Schwarzschild had
written a paper about the possible curvature of space. This was even
before special relativity. He had reasoned that space might be
positively curved, like the surface of a sphere, or even negatively
curved, like the surface of a Western saddle. He wanted to know
how big that radius of curvature had to be, given the then-current
astronomical observations. He was someone who was already willing
to think about the curvature of space. When Einstein’s paper came
out, Schwarzschild was very receptive: he understood it and, just as
important, he was able to deal with the difficult math involving
Riemann curvature tensors. He had all the tools he needed to do
something new and original with it. Schwarzschild was able to solve
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the problem, because he came up with a clever coordinate system in
which to solve these complex equations, which took advantage of
the fact that the problem had spherical symmetry and was
unchanging in time. This exact solution to Einstein’s vacuum field
equations for the empty space around a point mass turned out to
map the exterior of a black hole.

While serving in World War I, Karl Schwarzschild contracted a
rare skin disease, which ultimately proved to be fatal; he was sent
home sick in 1916 and at that time he learned of Einstein’s paper
and found his solution. He sent the solution to Einstein, saying that
during the middle of the war he had been pleased to “spend some
time in the garden of your ideas.” Schwarzschild died a few months
later.

Finding this exact global solution to the vacuum field equations
was very much like making a patchwork coat. At each point in
spacetime, you are sewing together pieces, where locally there are
different curvature terms that sum up to zero. The equations are
telling you the rules by which you can stitch the pieces together. You
just keep sewing and adding little pieces. But ultimately, you must
come up with a global solution—a patchwork coat—that satisfies the
rules at every point. This is quite difficult. Karl Schwarzschild was the
one who first managed to do this for the curved space around a
point mass.

Karl Schwarzschild’s son, Martin Schwarzschild, was our longtime
colleague at Princeton (see figure 8.3). He was also an astronomer
who made many important contributions. In particular, Martin
figured out that a star like the Sun would eventually become a red
giant. He definitely followed in his father’s footsteps. Martin never
really got to know his father, who died when Martin was only 4 years
old. Interestingly, Karl fought in World War I on the German side,
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whereas his son Martin fled Germany when Hitler came to power,
and fought on the American side against Germany in World War II.

To understand black holes, let’s first go back to Newtonian
gravity. If I take a ball and throw it up in the air, what will happen?
It will go up and then fall back down. There is even a saying about
this: “What goes up must come down.” The only trouble with this
saying is that it’s wrong. Ignoring air resistance, if you throw a ball
up fast enough, at greater than Earth’s escape velocity of 25,000
miles per hour, it will escape the gravitational field of Earth and
never come back. Apollo astronauts had to travel at nearly this
speed to get out to the Moon. Newtonian theory has a formula for
the escape velocity: ves

2 = 2GM/r, where G is Newton’s gravitational
constant, M is the mass of Earth, and r is the radius of Earth. Now
suppose I got an enormous trash compactor and crushed Earth to a
smaller size, wadding it up like a ball of paper and crushing it into a
smaller radius. What would happen to the escape velocity? Earth’s
mass would be the same, but its radius would be smaller, making the
escape velocity from its surface rise. Eventually, if I crushed Earth to
small enough size, the escape velocity would become equal to the
velocity of light c. How small is this? I could just set ves

2 = c2 =
2GM/r and solve for r. I would get r = 2GM/c2. We call this radius
the Schwarzschild radius, in Karl’s honor. For Earth’s mass, the
Schwarzschild radius is 8.88 millimeters. This is about the size of a
large marble. If you crush Earth to a size smaller than this radius,
the escape velocity would be greater than the speed of light and
nothing, not even light, could escape. Einstein showed that nothing
can travel faster than the speed of light—if you crush Earth to a
radius inside its Schwarzschild radius, it’s never going to re-emerge:
it forms a black hole. We call it a “black hole,” because no light from
inside it can ever get out. The mass will continue to collapse to still
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smaller size, where gravity will pull it together even more strongly,
increasing the escape velocity even more. Inside the Schwarzschild
radius, gravity wins over all other forces, and the mass collapses to a
point, a singularity of infinite curvature at the center. General
relativity would say that this point is of zero size, but we believe that
quantum effects will ultimately smear this out to a size of perhaps
1.6 × 10–33 cm, called the Planck length (we’ll see where this
number comes from in chapter 24). This is much smaller than an
atomic nucleus. We are left with a point mass at the center, of
essentially zero size, surrounded by empty curved spacetime.

If you were to venture inside the Schwarzschild radius, could you
ever get back outside? No. You would have to travel faster than light
to do so, and Einstein showed that was impossible.

The Schwarzschild radius of a black hole is proportional to its
mass. The bigger the mass is, the bigger the Schwarzschild radius
will be. The truth is that it would be very hard to crush Earth to be
within its Schwarzschild radius. But after they run out of their
nuclear fuel, massive stars have dense cores that are in danger of
falling inside their Schwarzschild radii. When the Sun dies, it will
become a red giant and then shed its envelope, leaving a white
dwarf core about the size of Earth. If the core of a dying star is more
massive than 1.4 solar masses but less than 2 solar masses, the
white dwarf star will collapse to form a neutron star with a radius of
about 12 kilometers. A neutron star is only about a factor of 2–3
larger than its Schwarzschild radius, and therefore is close to
dangerous ground. If you try to make a neutron star with a mass
larger than about 2 solar masses, it is unstable to collapse and
collapses inside its Schwarzschild radius, where gravity takes over
completely and a black hole is formed. A 10-solar-mass black hole,
such as may form when a very massive star collapses at the end of



428

its life, has a Schwarzschild radius of 30 kilometers. A 4-million-solar-
mass supermassive black hole, such as we find in the center of our
galaxy, has a Schwarzschild radius of 12 million kilometers (a bit less
than 1/10 of an AU). One of the largest black holes we have ever
found is at the center of the giant elliptical galaxy M87. It has a
mass of 3 billion solar masses and thus has a radius of 9 billion
kilometers. That’s twice the radius of our entire solar system out to
the orbit of Neptune.

Let’s imagine taking a trip inside a Schwarzschild black hole of 3
billion solar masses. Suppose we have a professor and a graduate
student; the professor wants to know what happens inside a black
hole, so he sends the graduate student to investigate. The professor
stays outside the black hole, firing his rocket to stay at a fixed radius
of, say, 1.25 Schwarzschild radii. The professor feels an acceleration
caused by his rocket to keep at that fixed radius and not fall in. As
long as the professor stays outside the black hole, bad things do not
happen to him. To investigate the black hole, however, the brave
graduate student just free-falls in. AHHHHHH! As the graduate
student free-falls in, he sends radio signals outward, back to the
professor, to tell the professor how things are going. The first part of
his message says, “THINGS.” The radio signal moves outward at the
speed of light.

The graduate student falls in farther, and the radio signal reaches
the professor. The professor receives the first word of the message:
“THINGS.” Meanwhile the graduate student falls in still farther. He
sends the second word of his message: “ARE.” This word is sent just
outside the Schwarzschild radius. It travels outward at the speed of
light, but it is going to take a long time to climb back out and reach
the professor. The professor has to fire his rockets just to stand still
and avoid falling in, and so he is actually accelerating away from the
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horizon, so it takes the signal “ARE” a long time to catch up with
him.

Meanwhile, the graduate student crosses the Schwarzschild
radius. Is this good? No. Will the graduate student ever be getting
back out to join the professor? No, unfortunately not. Yet as he
crosses this point of no return, there is no special road sign there
marking it. Nothing funny happens to the graduate student here.
The graduate student doesn’t know that anything bad has
happened. Everything looks normal to him. In fact, you might even
be crossing inside the Schwarzschild radius of some enormous black
hole right now, and from your room where you are reading this, you
wouldn’t even know it. Locally a tiny piece of spacetime looks
approximately flat, and therefore you have no hint as to what the
global solution looks like from local measurements. Just as the
graduate student crosses the Schwarzschild radius, he sends the
third word of his message: “GOING.” The second word of the
message, “ARE,” is still on its way out to the professor. So far, the
professor has only received “THINGS.” Now the graduate student
falls inside the Schwarzschild radius. The signal saying “GOING”
continues outward at the speed of light. But it is like a kid running
up on a down escalator and making no progress. At the
Schwarzschild radius, the escape velocity is the speed of light; the
radio signal traveling outward at the speed of light just stays at the
Schwarzschild radius, making no progress. The signal “ARE”
continues to make its way outward.

As the graduate student continues to fall farther inside the
Schwarzschild radius, something begins to happen. The graduate
student is falling in feet first. His feet are closer to the center than
his head. Because gravity is a 1/r2 force, the mass at the center is
pulling his feet more strongly than his head, with the force on his
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midsection being intermediate. His head and feet are being pulled
apart by this tidal force. It’s like being stretched on a rack. In
addition, the graduate student’s left shoulder is being drawn radially
inward toward the center, while the right shoulder is also being
drawn radially inward toward the center. His shoulders are being
wedged together as they are being drawn closer on lines that point
toward the center of the black hole. It is like being crushed in an
Iron Maiden. So he sends out the last word of his message: “BADLY.”
“THINGS ARE GOING BADLY.”

As he gets closer to the center, the forces grow larger and larger.
He is being crushed from the sides and stretched head to toe—being
turned into a piece of spaghetti. This is called spaghettification. That
really is the technical term astronomers use for this process!
Eventually the graduate student is ripped apart, crushed, and
deposited in the central point. The mass of the central point is now 3
billion solar masses plus a little! The Schwarzschild radius moves just
a little bit outward. The signal “ARE” is still working its way out to
the professor. The signal “GOING” is still running in place at the
Schwarzschild radius. The signal “BADLY” is going outward at the
speed of light but is like a kid running up on a down escalator, where
the escalator is going faster than the kid can run. Although running
up, the kid is being drawn downward. The signal “BADLY,” although
running outward, is sucked backward into the center, where it is
crushed and deposited on the point singularity as well.

Finally, after a long time, the signal “ARE” is received by the
professor. The professor has received the message “THINGS A . . .
R . . . E.” He never receives the rest of the message: “GOING
BADLY.” “GOING” remains stuck at the Schwarzschild radius, and
“BADLY” has been sucked into the pointlike singularity at the center
along with the graduate student. “BADLY” is the news of an event
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occurring inside the Schwarzschild radius. That signal is never going
to reach the professor, and he never finds out what happens inside
that radius. The professor never sees any events that occur inside
the Schwarzschild radius, which is why it is called the event horizon:
the boundary of the region containing all the events the professor
can see. The professor simply can’t see past the event horizon. In
the same way, on Earth you can’t see past the horizon when you
look out; it marks the limit of what you can see. Any observer who
stays outside the event horizon of the black hole can never see any
events that occur inside the event horizon.

If the professor ever wonders what happened to the poor
graduate student, he can turn off his rocket motor, which has kept
him hovering outside the black hole, and then he will free fall in
himself. When he crosses the event horizon, he will see that signal
“GOING,” which is still stuck there. As he rides down the “escalator,”
he will see the signal “GOING” running past him at the speed of
light. Light will always pass him at 300,000 km/sec. But then the
professor will fall into the center of the black hole and be killed as
well.

For a 3-billion-solar-mass Schwarzschild black hole, the graduate
student would have 5.5 hours of free-fall time as measured on his
watch before he hit the center and was killed. Luckily for him, the
spaghettification process, from the moment the tidal forces begin to
hurt him until he is completely ripped apart and killed, only takes up
the last 0.09 seconds of his trip. So at least it is a quick end.

We might also like to know what the curved geometry of the
exterior of the black hole looks like. I was once asked to appear on
the McNeil/Lehrer Newshour, because astronomers using the Hubble
Space Telescope had just discovered evidence that the big black hole
in M87 existed, and they wanted Kip Thorne and me to explain this
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to the viewers. I made up a little demonstration. If you cut a plane
through the center of the black hole, you might expect that plane to
be a flat, two-dimensional surface like a basketball court, with the
Schwarzschild radius a circle like the free-throw circle. The
singularity would be a point at its center. But that would be wrong.
This two-dimensional slice through the black hole is actually curved.
It looks like the horn of a trumpet pointing upward (figure 20.1.) The
third dimension here is purely to allow us to show you the curvature
of two-dimensional funnel surface. The third dimension is not real
here. Forget the space above and below the funnel, the only thing
that is real is the funnel shape itself. At large distances, the horn of
the trumpet flattens out, so that it begins to look flat like a
basketball court. Far from the hole the curvature is weak. The
extended trumpet horn slopes ever more dramatically downward
toward the hole as you approach it. The slope becomes vertical at
the Schwarzschild radius. The Schwarzschild radius marks the
circumference of the trumpet at its narrowest point. That’s why we
call it a black hole—it really is a hole. In fact, in the coordinate
system Karl Schwarzschild invented, the coordinate r is called a
circumferential radius, because 2πr is the circumference at that
point. This circumference lies within the surface of the funnel. You
can think of the funnel as a series of smaller and smaller circles
reaching a minimum circle at the bottom (where the circumference
is equal to 2π times the Schwarzschild radius). The Schwarzschild
radius is the radius of the hole at the bottom of the funnel. (Ignore
the flange base at the bottom in figure 20.1—it just holds up the
model of the funnel.)
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FIGURE 20.1. Black hole funnel. The geometry around a black hole is not flat like
a basketball court, but curved like a funnel. The funnel becomes vertical at the
Schwarzschild radius, indicated by the red band showing the circumference: 2π
times the Schwarzschild radius. An astronaut can fall straight in. When he passes
the Schwarzschild radius (the red band), that is the point of no return. Ignore the
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base that holds the funnel up. Also, ignore the inside and outside of the funnel, it
is only the funnel shape itself that is real. Photo credit: J. Richard Gott

For my TV demonstration, I used a trumpet-horn-shaped funnel.
I set it up with the rim of the bell at the top and the narrowest
circumference of the funnel at the bottom (see figure 20.1).
Astronomers had detected gas orbiting the black hole in M87 at high
velocity. I illustrated this by throwing marbles sideways into the
funnel and letting them spin around as they spiraled slowly
downward before disappearing through the hole at the bottom. Gas
likewise orbits the hole, with the gas farther in orbiting faster such
that gas rubs on gas, causing friction. The friction heats the gas,
making it glow. We can see this radiation, because it is emitted
outside the event horizon. Meanwhile this energy production causes
the gas to lose energy and spiral into the hole. This is the power
source for quasars: gas spiraling into a supermassive black hole. We
see the hot gas while it is spiraling inward toward the event horizon,
but we do not see it once it has passed that horizon. My
demonstration showed all these things. I thought it was pretty good,
and was ready to go for filming the news segment. Then I showed it
to my daughter, 7 years old at that time, and she said, why not drop
an astronaut in? She went to her room and came back with a cute
little one-inch-tall Apollo astronaut wearing his spacesuit and holding
a tiny American flag—a toy I didn’t know she had. If you are
spiraling around the black hole, like the marbles, you will spiral
around as you slowly descend into the black hole, or you can just fall
straight in like the graduate student. I put the toy astronaut at the
upper edge of the funnel and just let it slide straight in—
disappearing into the hole at the bottom. Perfect. A black hole is a
hotel where you check in but you don’t check out. The path of the
astronaut falling straight in is a curved radial line going straight
down into the funnel (it is a geodesic). When I let go of the
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astronaut, he falls straight down along this line in my model, so it
made a good illustration. When a TV crew comes to film you, they
usually take hours, filming lots of shots, but for national TV news
this usually gets edited down to a short clip. After filming all my
elaborate demonstrations with circling marbles spiraling in, what do
you think they chose to show in the end? Just the little astronaut
falling straight in, of course! Now you know what the geometry of a
black hole’s exterior looks like: it looks like a funnel, with a hole at
the bottom.

The Schwarzschild solution, found by Karl Schwarzschild in 1916,
showed the shape of this funnel. But Schwarzschild’s coordinate
system, clever though it was, broke down at the Schwarzschild
radius. His solution showed the geometry outside the Schwarzschild
radius, but it didn’t show what happens inside. It was like having a
map of the world that only showed the Northern Hemisphere—but
nothing south of the equator. People thought the exterior solution
was all that there was. Finally in the mid-1960s, my colleague Martin
Kruskal of the applied math department at Princeton, and George
Szekeres of the University of New South Wales, independently found
a way to extend the coordinates to cover all the interior of the black
hole solution. We can look at a spacetime diagram of the solution,
now called a Kruskal diagram (figure 20.2).
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FIGURE 20.2. Kruskal diagram. Spacetime diagram that shows the geometry
both outside and inside the Schwarzschild (nonrotating) black hole. The future is
toward the top. The diagram represents the curved empty space around a point
mass that has lasted forever. Our universe is to the right. The worldlines of a
professor and a graduate student (GS) are shown. The professor stays safely
outside the black hole at 1.25 Schwarzschild radii (1.25 rS.) The grad student falls
into the black hole and hits the singularity at r = 0. The event horizon (EH) runs
along a line where the radius is equal to the Schwarzschild radius (r = rS). Credit:
J. Richard Gott
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This two-dimensional diagram shows one dimension of space
horizontally with time shown vertically—the future is toward the top
of the diagram. This diagram has the property that light beams
travel in straight lines tipped at 45°. The speed of light is constant,
and the constant slope of 45° shows that. Let’s illustrate the
coordinates by returning to the professor and his ill-fated graduate
student. We start by drawing the worldline of the professor in black
(see figure). It is not straight, because the professor is accelerating,
firing his rocket to stay at 1.25 Schwarzschild radii from the black
hole. The professor stays outside the black hole. The worldline is
vertical at the point midway up and then bends toward the right. In
flat spacetime, this would be a worldline representing a particle that
was at rest at the midpoint and accelerated off to the right, picking
up velocity. The full worldline of the professor is a hyperbola. It
bends over, so that in the far future, it is going upward at about 45°
as it approaches the speed of light. Remember the Equivalence
Principle, in which an accelerating observer in flat spacetime is like a
stationary observer (the professor) in a gravitational field. The
professor’s worldline is bent like a hyperbola in the Kruskal diagram.

A horizontal line extending to the right from the point at the
center of the X where the two 45° lines cross represents a snapshot
of a radial ray extending from the hole at the bottom of the funnel
straight out of the funnel, pictured at a single instant of time. (The
other dimension of the funnel, the circumferential direction, is left
out of the diagram.)

The grad student’s worldline (labeled “GS”) is shown in green. He
travels along with the professor at early times, near the bottom of
the diagram, where both worldlines track each other side by side
until the graduate student leaves the professor at the vertical
midpoint of the professor’s worldline. The graduate student is free
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falling; his worldline falls into the black hole, while the professor
accelerates off to the right. The event horizon (labeled “EH,” and r =
rs, i.e., a radius equal to the Schwarzschild radius) is a line tipped at
45° that is asymptotic to the professor’s worldline in the far future. It
never touches the professor’s worldline. It is tipped at 45°, because
the light beam (in this case a radio wave) with the signal “GOING”
can travel along it. The grad student’s worldline crosses the diagonal
event-horizon line, just as he emits the photon signal “GOING.” The
professor will never receive that signal. The professor’s worldline
marks the set of points on the diagram where r is equal to 1.25
Schwarzschild radii. The light (radio) signals “THINGS” and “ARE” are
two lines tipped at 45° that were emitted before the graduate
student crossed the event horizon; those two signals do intersect the
worldline of the professor. He receives those signals. You can see
now why it takes the signal “ARE” such a long time to reach the
professor.

Where are the points lying at 0.75 times the Schwarzschild
radius? They are twisted around to form a hyperbola that looks like a
smile hovering above the diagonal event-horizon line. At the far
right, it approaches the diagonal event-horizon line EH from above
but never touches it. The singularity at r = 0 is also a hyperbola-
shaped smile lying above the r = 0.75 Schwarzschild radius one. The
grad student’s worldline hits this horizontal smile. We put teeth on
this grin, for these are jaws that will eat the grad student. The
spacetime is so warped that the singularity, which you might expect
to be a vertical line over to the far left, has been twisted around until
it lies in the future. In fact, once the grad student crosses the event-
horizon line, this hyperbola looms in the graduate student’s future.
He can’t avoid it any more than you can avoid next Tuesday. No
matter how he fires his rocket, he can’t go faster than the speed of
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light, and he must go upward at more than a 45° angle. Once he
has passed that event horizon, the hyperbola representing the
singularity looms above him, spanning more than ±45°, and his
worldline has to hit it. He is doomed. Likewise, the light signal
“BADLY” that he sends out at 45° toward the right after he crosses
the event horizon will hit the jaws of the singularity at r = 0 as well.

We can complete the Kruskal diagram to obtain the complete
point-mass solution. This represents a point mass that began in the
infinite past and lasts into the infinite future, in an otherwise empty
universe. The diagonal event-horizon line EH is joined by another
diagonal line going in the other direction to form a giant X in the
center of the diagram. This X divides the spacetime into four
regions. The outside of the black hole, where the professor lives, is
to the right of the X. That’s our universe. Above the X is the inside of
the black hole, where the singularity looms in the future at the top.
Below the X is an initial singularity labeled r = 0, looking like a frown
at the bottom in the past. To the left is another universe like ours. It
is connected to ours by a wormhole in the middle. If we were to
make a horizontal slice through this spacetime in the middle, we
would have a slice at a given instant of time. Its geometry is like two
funnels joined at their narrowest point. Starting on the far right, the
funnel has a large circumference, representing a large radius far
from the hole. Going toward the left, the funnel gets narrower and
narrower until it has a circumference of 2πrSchwarzschild at the event
horizon at the center of the X. It then fans out as again to large
radius to make another universe on the left side of the X. The two
funnels are joined to form a wormhole. Far away from the hole, the
funnels flatten out to look like basketball courts, and they extend to
infinity. Imagine a basketball court on the second floor of a building
with a curved funnel leading downward into a hole at the center of
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the court (like the hole on a golf green). This funnel begins to open
out again and fans out to make a pretty flat ceiling on the floor
below the floor containing the basketball court. The basketball court
represents our large universe, and the ceiling of the floor below
represents another large universe connected to ours by the small
hole smoothly connecting the court surface to the ceiling below it.
The two large universes are connected by a wormhole at the instant
represented by the horizontal line through the diagram. But you
can’t use this wormhole to travel from one universe to the other.
That’s because the arms of the X are tipped at exactly 45°. To cross
from the region to the right side of the X (our universe) into the
region to the left side of the X (another universe), you would have to
have a worldline with a slope inclined at more than 45° to the
vertical. That would mean you were traveling at greater than the
speed of light, and that’s not possible. But you could in principle
meet an extraterrestrial from the other universe inside the black hole
in the upper (future) quadrant. You could even shake hands. You
might say to each other, “Boy, are we in trouble,” before you both
died as you hit that smiling singularity in the future. You would hit
that singularity in a finite time.

The singularity in the past, at the bottom, is rather like the Big
Bang singularity at the beginning of our universe. This part of the
solution is called a white hole. It is a time-reversed version of a
black hole—like a movie of a black hole run backward. A particle can
be created in the white hole singularity at the bottom and have its
worldline come out into our universe. If a particle can fall into a
black hole, it can come out of a white hole.

The black holes that we might encounter now have not been
around forever. In a realistic case, a black hole might be formed
from the collapse of a star. In the spacetime Kruskal diagram,
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imagine that the surface of the collapsing star lies just below the
graduate student’s feet: just below the grad student’s feet when he
is with the professor and just below the grad student’s feet as he
falls in. This represents the situation when the surface of the star
maintains a radius of 1.25 Schwarzschild radii for a long time and
then free falls inward just below the grad student’s feet as he free
falls in. The worldline of the surface of the star is thus parallel to
that of the grad student and just to the left of it. Beneath the falling
graduate student is the interior of the star, beneath its surface,
where the density of matter is greater than zero and the vacuum
solution of the Kruskal diagram does not apply. Just ignore that part
of the diagram to the left of the graduate student’s worldline—no
wormhole, no other universe, no white-hole singularity at the
bottom. These are not formed when a star collapses to form a black
hole. But the part of the diagram to the right of the graduate
student’s worldline is in the vacuum region and it accurately depicts
what is happening. The grad student does get crushed as his
worldline hits the singularity at r = 0. If you lived inside the star (in
an air-conditioned little room), you would find yourself crushed when
the volume of the star shrinks to zero and its density blows up to
infinity. A curvature singularity awaits your worldline in the future as
well: you hit r = 0 when the size of your star collapses to zero.

Here’s some advice: just stay outside the Schwarzschild radius,
and you will be okay. You can happily orbit outside the black hole
event horizon. If the Sun were to collapse and form a black hole,
Earth would stay in its current orbit outside. You could see the black
hole, which would appear as a black disk in the sky. It would be
surrounded by gravitationally lensed images of stars behind it (figure
20.3).
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FIGURE 20.3. Simulated view of a Schwarzschild black hole. It looks like a black
disk in the sky, surrounded by gravitationally lensed images of background stars.
You can see two images of the galactic plane whose light is bent around opposite
sides of the black hole on the way to your eye.
Photo credit: Andrew Hamilton (using Milky Way background image adapted from
Axel Mellinger)
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In 1963, Roy Kerr discovered an exact solution to Einstein’s field
equations for a rotating black hole (one having angular momentum).
It has a more complicated geometry inside its event horizon, which
we discuss in chapter 21. But its event horizon marks the point of no
return, just as in the Schwarzschild black hole. Kerr’s solution was
brilliantly vindicated on September 14, 2015, when astronomers
from the Laser Interferometer Gravitational-Wave Observatory
(LIGO) witnessed the formation of a 62-solar-mass rotating Kerr
black hole from the collision of a 29-solar-mass black hole and a 36-
solar-mass black hole. The two had formed a tight binary, and
spiraled inward, losing energy due to emission of gravitational
radiation. By studying these gravitational ripples in the geometry of
spacetime, astronomers were able to deduce the masses of the
black holes involved. Since the two black holes had orbital angular
momentum as they circled each other, it was not surprising that a
rotating black hole formed at the center. The ringing oscillations of
this final black hole that formed and then settled down matched
exactly those expected from the decay of perturbations to a Kerr
black hole. Astronomers could even determine that the Kerr black
hole had approximately 67% of the maximum angular momentum
allowed for a black hole of its mass. The whole collision, including
the emission of gravitational waves, could be simulated on a
supercomputer that solved Einstein’s equations to calculate the
geometry of spacetime. The agreement between the computer
simulation and the observed gravitational wave ripples shows that
Einstein’s equations work even when spacetime is highly curved—a
very important result.

In 1974, Stephen Hawking surprisingly and famously discovered
that a black hole actually radiates thermal radiation: energy can, and
does, escape from a black hole. How did this discovery come about?
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Princeton graduate student Jacob Bekenstein was talking with his
PhD thesis advisor John Archibald Wheeler. Wheeler was the one
who coined the name “black hole.” And it’s a good name! Black holes
are holes, and they are black—they emit no light. As Neil has said,
astronomers prefer simple names for things—“it’s black and it’s a
hole, so why not just call it a ‘black hole’?” Wheeler was the
godfather of black hole research and helped revive interest in
general relativity in the 1960s. He got people interested in working
on the subject and with Charles W. Misner and Kip Thorne wrote an
influential textbook on it whose early proofs I studied as a graduate
student. When Kruskal discovered his diagram, he sent it to Wheeler
to ask his opinion of it and went on vacation. Wheeler read the
paper and thought it was so important that he wrote it up himself
and sent it immediately to the Physical Review journal with Kruskal’s
name alone on it! When Kruskal got back from vacation, he found
his paper had already been sent in to the journal.

Wheeler invited his student Bekenstein in for a talk. He brought
out a cup of hot tea and mixed some cold water into it. Wheeler
said, “I have just committed a crime: I have increased the entropy
(disorder) in the universe, and I can’t take it back, because I can’t
unmix the tea and water.” Bekenstein knew that the entropy in the
universe always increases with time. If you break a vase, the
disorder in the universe increases. We don’t often see pieces bounce
up and assemble themselves into a vase. In fact, when you see a
film showing this by running the film backward, you laugh, because
you know that it is unlikely to occur. There is a certain chance that
something like that would occur, but it is very small. Statistically, we
expect to see the disorder in the universe increasing with time—this
principle is called the second law of thermodynamics. People like
order; it is a shame to break a beautiful vase into pieces. Following
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this logic, any increase in entropy, like mixing the tea and water, can
be considered a crime. Wheeler went on: “But now I can hide the
evidence of my crime by throwing the lukewarm tea and water
mixture into a black hole. It will increase the mass of the black hole:
it will now have the mass it did before, plus that of the tea and
water, but not by any more than if I had thrown the tea and the
water separately into the black hole. I have gotten back the result I
would have had if I had not mixed the tea and water in the first
place, and that seems to violate the second law of thermodynamics.
Think about it!”

Bekenstein took Wheeler’s idea seriously and thought about it.
The resulting paper struck me as particularly brilliant. Bekenstein
noted that Hawking had proved a theorem saying that the total area
of all the event horizons in the universe always goes up with time if
the mass density everywhere is nonnegative, which seemed
reasonable. When mass is added to a black hole, the mass of the
black hole increases, and its Schwarzschild radius increases. The
surface area of the event horizon, which is 4πrSchwarzschild

2, goes up
as well. If two black holes collide, as they did in the case discovered
by LIGO, they form a black hole that has an event horizon whose
total area is larger than the sum of the areas of the event horizons
of the two initial black holes. In the LIGO case, for example,
calculation shows the area of the event horizon of the final rotating
62-solar-mass Kerr black hole is at least a factor of 1.5 greater than
the sum of the areas of the event horizons of the initial 29- and 36-
solar-mass black holes. To Bekenstein, this phenomenon of the total
area of the event horizons always going up with time sounded to
him like entropy, which of course also is always going up with time.

Bekenstein did a thought experiment: he lowered a particle on a
string as gently (nearly reversibly) into a Schwarzschild black hole as
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possible, and calculated how much the area of the black hole went
up. He noted that this corresponded to a loss of one bit of
information, namely, the information about whether that particle
existed or not. Because a loss of information in his thought
experiment is equal to a specific increase in entropy, he was able to
calculate the relationship between the number of bits of information
lost, to the increase in the area of the black hole horizon. He found
the loss of one bit of information corresponded to a tiny increase in
area—of order (1.6 ×10–33 cm)2 = hG/2πc3 (where these are our old
friends, Planck’s constant h, Newton’s gravitational constant G, and
the speed of light c). We’ll see this distance of 1.6 ×10–33 cm, called
the Planck length, again, in chapter 24. It’s the scale where
spacetime geometry becomes uncertain due to Heisenberg’s
uncertainty principle in quantum mechanics. When Wheeler dropped
his mixed cup of lukewarm tea and water into the black hole, he
increased the area of its horizon and its entropy. The entropy in the
universe still went up appropriately because the black hole had an
entropy that increased as the mixed cup fell in. Black holes had a
large but finite entropy, Bekenstein concluded.

Interestingly, Bekenstein’s work puts a limit on the amount of
information your 6-inch-diameter hard drive can store—1068 bits =
1.16 × 1058 gigabytes. Try to pack more information than that inside
its diameter, and it will become so massive that it collapses and
forms a black hole. (To follow the reasoning in detail, see appendix
2.) Bekenstein’s argument also puts limits on the number of bits of
information you can cram into the finite radius of the observable
universe, and therefore on the number of different visible universes
of our size and energy one can have—namely, 10^(10^124), the big
number Neil gave you in chapter 1. So, Bekenstein’s paper has a lot
of applications.
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But Hawking, unlike me, thought Bekenstein’s paper was wrong.
If you added a finite amount of energy to a black hole and that
increased its entropy by a finite amount, this implied by a simple
thermodynamic argument that it had a finite temperature. Hawking
thought that must be incorrect. Black holes do not glow like an
object of finite temperature would glow. Black holes are black—they
have a temperature of zero.

Roger Penrose had shown that in the special case of a rotating
black hole, a particle could decay into two particles in a region just
outside the black hole event horizon, and one particle could fall
inside the event horizon in a counter-rotating way so that it lowered
the angular momentum of the black hole, while the second decay
particle sailed out with more energy than the total energy the initial
particle possessed. In a rotating black hole, some of the hole’s mass
is tied up in its rotational energy, and at the end the black hole is
rotating more slowly, so its total mass is smaller than it was before.
Tapping the rotational energy of the black hole provides the energy
to power the high-energy escape of the second decay particle. In
this process, the area of the rotating black hole’s event horizon goes
up a little. Demetrios Christodoulou, another of Wheeler’s students,
investigated these questions, putting limits on how much energy
could be extracted from the rotating black hole. In the Soviet Union,
Yakov Zeldovich had applied this idea to electromagnetic waves. He
presented a heuristic argument that an electromagnetic wave
impinging near a rotating black hole could be amplified, gaining
more energy, like the Penrose escaping particle. This looked like
stimulated emission, the laser effect discovered by Einstein. By that
logic, the rotating black hole should have some spontaneous
emission as well, slowly losing rotational energy by emitting
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electromagnetic waves. Alexei Starobinski calculated these effects
for waves for a rotating Kerr black hole.

As recounted by his student, Don Page, 1 Hawking wanted to put
these ideas on a firmer foundation. Hawking set out to apply
quantum mechanics in curved spacetime—to calculate the creation
and annihilation of particles in the curved Schwarzschild spacetime
to discover whether the nonrotating black hole really emitted any
radiation. Hawking found, quite to his surprise, that particles were
created—the black hole emitted thermal radiation. The black hole
had a finite temperature after all! Hawking used the fact that, in the
vacuum of empty space, particle pairs are always being created,
falling back together, and annihilating again. These are called virtual
pairs. They are always popping in and out of existence. Heisenberg’s
uncertainty principle of quantum mechanics says that the energy of
a system is significantly uncertain over a short enough time period.
Thus the energy needed to create an electron and a positron (you
need both; the total electric charge still needs to be conserved), can
be “borrowed” from the vacuum for a short amount of time. Thus an
electron-positron pair can be created near each other out of the
vacuum and can fall back together and annihilate again after a short
period (of order 3 × 10–22 seconds). But in the black hole case, the
electron can be created slightly inside the event horizon and the
positron slightly outside the event horizon. The electron created
inside the event horizon can’t get back outside to recombine with
the positron on the outside. The electron falls into the black hole,
and the positron escapes. The electron created inside the event
horizon has a gravitational potential energy that is negative and
larger in magnitude than its rest mass energy from E = mc2. Thus,
its total energy is less than zero and when it falls in, it robs the black
hole of some energy and therefore of some of its mass. This makes
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up for the mass and energy of the emitted positron. There is a
quantum vacuum state (now called the Hartle-Hawking vacuum)
around the black hole of slightly negative energy density, which
violates the positive energy assumption on which the Hawking area-
increase theorem was based. In this case, the area of the event
horizon goes down slightly as the positron escapes. Alternately, it
can be an electron that escapes while a positron falls in. The same
effect can produce pairs of photons, where one photon created just
inside the horizon falls in and the other created just outside the
horizon escapes. Hawking found that black holes give off thermal
radiation (now called Hawking radiation). This causes black holes to
shrink, and eventually evaporate. This thermal radiation has a
characteristic wavelength (λmax) about 2.5 times the size of the
Schwarzschild radius of the black hole. For a 10-solar-mass black
hole, this means it is giving off 75-kilometer-long radio waves—far
too feeble to be detected; this thermal radiation is very low
temperature, 6 × 10–9 K (with very few positrons and electrons in
the mix). This is why Stephen Hawking has not garnered a Nobel
Prize yet. If the radiation were strong enough to have been detected
by now, he would surely have gone to Stockholm by now. No one, I
think, doubts that the radiation exists; but the radiation is predicted
to be extremely weak. Black holes of stellar mass or larger are
actually absorbing more radiation from the cosmic microwave
background (CMB) than they are emitting. Only in the far future will
the microwave background redshift and cool enough to allow the
evaporation process to proceed.

It takes black holes a long time to evaporate. A 3 × 109-solar-
mass black hole like the one in M87 currently should be emitting
thermal radiation with a temperature of about 2 × 10–17 K—mostly in
the form of photons and gravitons. According to calculations by Don
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Page, a 3 × 109-solar-mass black hole will take 3 × 1095 years to
evaporate. Today it is accreting more radiation from the CMB than it
is emitting in thermal radiation. Its loss of mass will not really start
until the CMB temperature has dropped below 2 × 10–17 K. That
should occur about 700 billion years from now. Ultimately, due to
evaporation, it will finally shrink to a size of about 10–33 cm and then
go out of existence in a blaze of ultra-high-energy gamma rays. It is
thought that the information lost when the black hole formed
eventually leaks back out in the Hawking radiation that is emitted as
it evaporates, but in a scrambled (disordered) form.

The details of how this evaporation affects the interior of the
black hole are still being hotly debated. Some physicists believe that
the antiparticles (or particles) just inside the event horizon paired
with the Hawking particles (or antiparticles) being emitted outside
the horizon can form a firewall, a wall of hot photons, just inside the
event horizon that will kill any astronaut falling in. This effect might
become important only after the black hole has evaporated more
than half its mass, something that would only occur in the far future.
The details depend on the quantum vacuum state that forms around
the black hole.

James Hartle and Hawking found a quantum vacuum state that
did not blow up on the event horizon and in which an infalling
astronaut would not get burned up as he passed through to the
inside. When a particle and an antiparticle (such as a positron and
an electron) are created out of the vacuum, their quantum states are
entangled. The two particles have angular momentum and spins that
are opposite. If you measure the spin of one relative to a particular
direction, you instantly know that the spin of the other relative to
that same direction is the opposite. This remains true even as the
particles separate to large distances. This effect puzzled Einstein,
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who called it “spooky action at a distance.” It was one of the things
that troubled him about quantum mechanics. In a recent paper, Juan
Maldacena and Leonard Susskind, two of the leading experts in the
field, have argued that quantum entanglement between the particles
being emitted and their partners on the inside of the horizon can
keep the astronaut cool as he falls through, just as Hartle and
Hawking intended. They argue that the particle and its antiparticle
are connected by a tiny microscopic wormhole. They are essentially
touching each other through the wormhole while being separated by
a large distance in regular space. The wormhole is like a hole in a
dining room tabletop that allows an ant to get from the top surface
of the tabletop to its underside. Yet the two wormhole openings, or
mouths, are separated by a large distance if one must follow a path
along the table’s big surfaces. An ant would have to crawl a long
way to get from the upper wormhole mouth to the lower wormhole
mouth this way. She would first need to crawl along the top of the
table to reach its side edge; then she would have to crawl around
the side, underneath the tabletop, and then along the bottom
surface of the tabletop until she reached the lower wormhole mouth.
That traveling ant would say the upper and lower mouths of the
wormhole were widely separated, whereas an ant zipping through
the wormhole would realize that they were actually quite close to
each other. This could solve Einstein’s “spooky action at a distance”
problem. The particle and antiparticle are always close to each other
through the wormhole. Interestingly, Wheeler had already
commented that electric field lines converging on a wormhole mouth
could look like an electron (on the underside of the tabletop), but
when they emerged and fanned out on the top of the table, they
would look like a positron. Thus, he argued that particles and
antiparticles could be linked by a wormhole like that occurring in a
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black hole, such as we encountered in the Kruskal diagram
connecting two universes (in that case called an Einstein–Rosen
bridge). Einstein’s paper on spooky action at a distance was co-
authored with Nathan Rosen and Boris Poldowski. Thus, Maldacena
and Susskind argued, the Einstein, Rosen, Poldowski paradox of
spooky action at a distance can be resolved using a microscopic
Einstein–Rosen bridge! Surprisingly, Einstein and Rosen (and
everyone else) missed the connection! If this picture is correct, it
looks safe for the graduate student to pass inside the event horizon,
as Hawking had originally supposed. This example points out some
of the deep connections that Hawking’s work has illuminated.

I remember well the excitement when Hawking came to Caltech
to tell us of his discovery that black holes would evaporate. Kip
Thorne, one of the world’s experts on black holes, introduced him.
Nobel laureate Murray Gell-Mann was in the audience. Thorne
assured us all of the revolutionary importance of this research. I
agree—it is the most important result in the theory of general
relativity since Einstein’s day. You’ve heard of Stephen Hawking—this
is how he became world famous. Some of these exciting events have
been recounted in the 2014 movie The Theory of Everything, which
earned Eddie Redmayne an Oscar for his compelling and accurate
portrayal of Hawking.
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21
COSMIC STRINGS,

WORMHOLES,
AND TIME TRAVEL

J. RICHARD GOTT

Since I work on time travel in general relativity, the neighborhood
children think I have a time machine in my garage. Once I attended
a cosmology conference in California, and I happened to wear a
turquoise sports coat. A colleague of mine, Robert Kirshner, then
chair of Harvard’s astronomy department, came up to me and said,
“Rich, you must have bought this coat in the future and brought it
back, because they haven’t invented this color yet!” Ever since then,
this has been known as the “Coat of the Future,” and I have worn it
when giving talks about time travel.

I start my usual talk about time travel by entering wearing this
turquoise sports coat and carrying a brown briefcase. I hide the
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briefcase in a cabinet and make a hasty exit. I return wearing a tee
shirt. I explain to the audience that I have another meeting to go to
and that I have arranged for a guest speaker to give the talk for me,
and I exit again. I return a second time wearing the turquoise sports
jacket and tell everyone that it is the “Coat of the Future.” I explain
that I couldn’t give the talk, because I had a meeting to go to at the
same time; but since I have a time machine, after my meeting I
could simply go to the future, buy the coat of the future then, and
come back in time to give the talk as my older self!

At that point I notice that I forgot to bring the notes for my time
travel talk. What to do? Since I have a time machine, I realize I can
get them the next day (after my talk) and come back in time to
deposit my briefcase containing my notes somewhere in the
classroom ahead of time. I look around but don’t see them. So, I
must have hidden them. Is there anywhere around to hide them?
Maybe in the cabinet. I open the cabinet, find the briefcase, and
open it. Yes! My time travel notes are inside.

Let’s see what’s going on here by tracing the worldlines on a
spacetime diagram. Space is shown horizontally and time vertically
with the future toward the top. The classroom where I’m giving the
talk is a vertical band in the center. Here is what my worldline looks
like (see figure 21.1).
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FIGURE 21.1. Spacetime diagram of Professor Gott’s time travel talk. Credit: J.
Richard Gott
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In the spacetime diagram, I am outside the room and wearing a
white tee shirt. I come into the room briefly and mention that I am
not really able to give the talk, because I have to go to a meeting. I
leave, go to the meeting, and then proceed into the future, where I
buy the “Coat of the Future.” Now my worldline becomes turquoise
in color. I come back in time and re-enter the room where I then
give the talk. After the talk is over, I have to go back in time to just
before the talk to bring the time travel notes into the room. I will
enter the room and then quickly leave before my younger tee-shirt-
wearing self comes in. I will then continue to live the rest of my life
on into the future. I have a complicated worldline.

But what about the worldline of the briefcase? I have the
briefcase in my possession just after finding it in the cabinet. If I
simply hold onto it, I can take it along with me, looping back in time
and delivering it to the room earlier, where it stays until I find it in
the cabinet. The worldline of the briefcase is a circular loop (colored
orange). The briefcase’s worldline is odd, because it has no
beginning and no end. My worldline has a beginning when I am born
and an ending when I die, but the briefcase’s worldline is a closed
loop. The briefcase is what we call a jinn particle. This term is
named after a jinn, or genie, who appears out of nowhere.

The briefcase never leaves my sight. The briefcase never visits a
briefcase factory. Physicists who work with time travel to the past
have to deal with jinn particles when they consider quantum effects.
What if my briefcase gets a scuff mark on it as I take it with me
after the lecture? Igor Novikov has pointed out that such wear and
tear undergone by a jinn particle would have to be repaired at some
point to return it to its original condition—my briefcase is no
exception. This does not violate the laws of entropy, because the



457

briefcase is not an isolated system; energy coming from outside is
used to repair the briefcase.

Information can also be a jinn. Imagine that I go back in time to
1915 and give Einstein the correct field equations of general
relativity. He could then write them up and publish them. Where did
the information come from? I learned it by reading his paper, and he
learned it from me—a circular worldline.

Jinn particles are possible under the laws of physics—they are
just improbable—and the more massive and complex the jinn
particles are, the more improbable they become. We could have had
the same story if I had found a paper clip on the floor in the lecture
hall and carried it with me instead of the briefcase and gone back in
time to place that paper clip on the floor in the spot I found it. Then
the paper clip is a jinn, and it would have been simpler and less
massive than the briefcase. Simpler still, I could even have found an
electron and taken it back in time to place it in the lecture hall . It is
just more improbable to find an object as large and complex as a
briefcase, and particularly lucky to find one containing the exact
notes I need for my talk. I think such complicated jinn are possible
but very unlikely to occur.

Time travel to the past happens when you have a worldline that
loops back into the past. The usual state of affairs is captured by
figure 18.1 of the worldline of Earth and other planets as helixes
around the worldline of the Sun. Nothing is going faster than the
speed of light, and the worldlines all proceed toward the future.
Figure 21.2 shows the situation when you have time travel to the
past. The time traveler’s worldline loops backward in time to visit an
event in his own past.
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FIGURE 21.2. Spacetime diagram of time traveler’s worldline.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)

The time traveler starts at the bottom in the past and comes
upward until he encounters a worldline of his older self, who says,
“Hi! I’m your future self! I’ve traveled back in time to say hello!” He
replies, “Really?” and goes on to loop back into the past. He then
encounters his younger self and says, “Hi! I’m your future self! I’ve
traveled back in time to say hello!” His younger self replies “Really?”
The time traveler experiences this scene twice, once as his younger
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self and once as his older self, but the scene only happens once. You
can think of this as one four-dimensional sculpture with worldlines
on it. It never changes: that’s what the picture looks like. If you
want to know how it would be to experience it, then follow a
worldline around and see what other worldlines would approach you.

This brings us to one of the ways to address the famous
grandmother paradox: What if I go back in time and accidently kill
my grandmother before she gave birth to my mother? Then she
would not give birth to my mother, and my mother could not give
birth to me, which means I wouldn’t exist; therefore, I can’t go back
in time to kill my grandmother, which in turn means she’s okay and
gives birth to my mother, who gives birth to me after all. It’s a
paradox. The conservative solution to the grandmother paradox is
that time travelers cannot change the past. They were always part of
the past. You might have gone back in time and had tea and cookies
with your grandmother as a young girl, but you could not have killed
her, because she gave birth to your mother, who gave birth to you.
The solution must be self-consistent. Kip Thorne, Igor Novikov, and
their collaborators constructed a set of thought experiments
involving time-traveling, colliding billiard balls to show that it always
seems possible to find self-consistent solutions free of paradoxes.

You don’t have to worry about changing history: no matter how
hard you try, you don’t change anything. If you went back to the
Titanic to warn the captain about the iceberg, the captain would
ignore your warning just as he ignored all the other iceberg
warnings, because we know the ship went down. You would find it
impossible to change events. The time travel in the film Bill and
Ted’s Excellent Adventure is built on that same principle of self-
consistency.
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The alternative solution to the grandmother paradox is the
Everett many-worlds theory of quantum mechanics. Physicists
disagree about this, but let’s first consider how it works. In the
many-worlds theory, many parallel worlds can coexist like railway
lines in a railway switching yard. We see one history—like riding
down one railway track. The events we see are like stations we pass:
Here is World War II, . . . here are people landing on the Moon, and
so on. But there are many parallel worlds. There is a world where
World War II never happened. This is based on Richard Feynman’s
many-histories approach to quantum mechanics: he found that to
calculate the probability of an outcome in any future experiment,
you must consider all possible histories that could have led up to it.
Some people think this is just one of the weird rules of how to do
calculations in quantum mechanics, but proponents of the many-
worlds model think that all those histories are real, and they interact
with one another. David Deutsch has argued that a time traveler
could go into the past and kill his grandmother as a young girl. That
would cause a new track to branch off. In that branching history,
there would be a time traveler and a dead grandmother. The track
where the time traveler was born and where his grandmother lived is
a separate track that still exists. He still remembers the part of his
history on that track before he switched to a new one. Both tracks
exist.

We now have two solutions to the grandmother paradox, each of
which solves it: the conservative one, which is a single, self-
consistent, four-dimensional sculpture that does not change, and the
more radical many-worlds theory of quantum mechanics. Either
solution works.

Now if we return to our picture of the time traveler’s worldline
looping back into the past, we can notice one thing wrong with it.
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Light travels at a slope of 45° in this diagram. As the time traveler
loops over the top, to start returning to the past, at some point the
slope of his worldline relative to the time axis must be greater than
45°. That means that at some point, he must be exceeding the
speed of light. Just as he rolls over the top, he is actually traveling at
infinite speed. The notion that if you could travel faster than light,
you could travel back in time is recognized in A.H.R. Buller’s limerick:

There was a young lady called Bright
Who could travel far faster than light;

She set off one day,
In a relative way,

And returned home the previous night.

The trouble with this is that Einstein showed, in his theory of
special relativity, that you cannot build a rocket that travels faster
than light. If you are always going slower than the speed of light,
the slope of your worldline never tips more than 45° from the time
axis, and you cannot circle back to the past. However, in Einstein’s
theory of general relativity, in which spacetime is curved, you can
beat a light beam by taking a shortcut, either by going through a
wormhole or (as we shall see) by going around a cosmic string. If
you can beat a light beam, you—like Ms. Bright—can travel back in
time.

Suppose you have a piece of paper, representing one dimension
of space horizontally and the dimension of time vertically (figure
21.3). Your worldline is then a vertical green line on this sheet of
paper. You are lazy, just staying at home, so your worldline runs
straight up from the bottom of the paper to the top. With curved
spacetime, however, the rules change. Let’s bend the paper into a
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horizontal cylinder by taping the top to the bottom. Now your
worldline is a circle going back into the past.

You are always going forward into the future, but you circle back
into the past. The same thing happened to Magellan’s crew. They
traveled always west, west, west around the curved surface of Earth,
and yet arrived back in Europe. This could never have happened if
Earth’s surface were flat. In the same way, the time traveler always
travels toward the future, but if spacetime curves sufficiently, she
can circle back to an event in her own past.

Various solutions in general relativity permit this. Before
discussing them, let me describe cosmic strings. In 1985, I found an
exact solution to Einstein’s field equations for the geometry around a
cosmic string. Alex Vilenkin of Tufts University had found an
approximate solution, and I found an exact solution. William Hiscock
of Montana State University also found the same exact solution
independently, so we both share credit for that discovery. The
solution tells us what the geometry around a cosmic string is like.

But what is a cosmic string? It’s a thin (narrower than an atomic
nucleus) high-energy-density thread of quantum vacuum energy
under tension, something that might be left over after the Big Bang.
Such strings are predicted in many theories of particle physics. We
haven’t found them yet, but we’re certainly looking for them.

Physicists have learned that a vacuum (empty space—free of
particles and photons) can acquire an energy from the presence of a
field permeating space. This concept comes into play, for example,
with the recently discovered Higgs field and its associated particle
the Higgs boson. After the Higgs boson was discovered at the Large
Hadron Collider, François Englert and Peter Higgs won the 2013
Nobel prize in Physics for their theoretical work predicting its
existence. As I discuss in chapter 23, we now believe that the very
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early universe had a high vacuum energy. When this vacuum energy
decayed into normal particles, it is possible that some of it remained
trapped in thin threads of high vacuum energy—the cosmic strings.
It is like when a field of snow melts, and some snowmen are left
standing at the end. Similarly, cosmic strings are made of vacuum
energy left over from the early universe.
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FIGURE 21.3. Curved spacetime allows a worldline to circle back into the past.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)

Cosmic strings have no ends: either they are infinite in length if
the universe is infinite in extent, or they occur in closed loops.
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Visualize (infinitely long) strands of spaghetti, and SpaghettiOs. We
expect to have both the infinitely long strands and the loops. Most of
the mass in the network of cosmic strings is contained in the
infinitely long ones.

As for the geometry of the space around the cosmic string, we
need to ask: what would a cross-section through a plane
perpendicular to the string look like? You might expect this to look
like a piece of paper with a dot in the middle where the string went
through. But a cosmic string is expected to be very massive—about
a million-billion (1015) tons per centimeter—and, therefore, it warps
the space around it significantly. Instead of looking like a piece of
paper with a dot in the middle of it, it looks like a pizza with a slice
missing (figure 21.4).
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FIGURE 21.4. Geometry around a cosmic string.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)

You start with a pizza and simply remove one slice. Just eat it.
Get rid of it. It’s gone. Take the rest of the pizza and carefully grab
the two edges of the pizza next to where the missing slice used to
be. Draw these together so that you form the pizza into a cone. This
is a cross-section of the geometry around the string. It is shaped like
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a cone. The string itself passes through the center of the pizza. The
conical geometry shows that the circumference is not equal to 2π
times the radius of the pizza. That’s because there is a piece missing
—the circumference is less than it would be if the pizza had all its
slices. You can see that it does not obey the laws of Euclidean
geometry for a flat plane.

The angular width of the missing slice is proportional to the mass
per unit length of the string and, for cosmic strings that might be
realistically produced in the early universe (grand unified models of
particle physics predict that they are produced at an epoch when the
unification of the weak, strong, and electromagnetic forces begins to
break) this angle is actually rather small—maybe a half second of arc
or less. This is very small, but it’s nevertheless detectable.

In figure 21.4, the string is at the center, and you can see the
missing slice where the two edges are taped together. Suppose I’m
sitting on Earth and I’m looking at a quasar behind the string. Light
can come to me via either of these two straight-line trajectories
(light path 1 or light path 2) that pass on either side of the string. If
you tape the sides of the missing slice together such that the piece
of paper makes a cone, the two light paths bend around each side of
the string. Their paths are being bent by gravitational lensing. It’s
the same effect that bends light passing near the Sun, as discussed
in chapter 19. Yet their trajectories are as straight as they can be. I
drew them with a ruler. When the paper pizza is taped together as a
cone, one can drive little trucks steering straight ahead along either
light path 1 or light path 2 from the quasar to Earth. Both paths are
geodesics. Because two light beams can travel on straight-line paths
from the quasar to Earth, we see twin images of the quasar on
opposite sides of the cosmic string. We can look for a cosmic string
by searching for pairs of quasar images appearing on opposite sides
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of the cosmic string in the sky, like pairs of buttons on a double-
breasted suit. We haven’t found any lensed by a cosmic string yet,
but we are still looking.

One remarkable feature of this picture is that the two light paths
can have different lengths. In figure 21.4, for example, path 2 is a
bit shorter than path 1. So if I flew in my spaceship from the quasar
to Earth on path 2 at 99.9999999999% of the speed of light, I could
beat a light beam going along path 1, because the light beam had a
longer distance to travel. I could beat a light beam by taking a
shortcut!

Although we haven’t seen a cosmic string yet, we have actually
observed this sort of gravitational lensing phenomenon with a galaxy
situated between us and a quasar. We see two images of the distant
quasar QSO 0957+561 on opposite sides of a lensing galaxy in the
sky. The warping of spacetime produced by the galaxy is bending
the light in the same way as would occur for the cosmic string. In
this case, the background quasar is varying in brightness; a team of
astronomers led by Ed Turner, Tomislav Kundić, and Wes Colley, and
in which I participated, was able to measure the same outburst in
the quasar in both images and determine that there was a time
delay between the two images of 417 days. That is a small fraction
of the total light travel time of 8.9 billion years. If you want to know
whether you can travel faster than light, in this case the answer is
yes, you can! One light beam has beaten the other light beam by
417 days in a fair race through empty space, but only by taking a
shortcut.

So looking for double images of quasars is one way to search for
cosmic strings. So far, all the cases seem to be explained by galaxy
lenses, but we would expect string-lensed quasars to occur more
rarely, so this is not surprising. We keep looking.
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Cosmic strings are under tension and are typically whipping
around at velocities of about half the speed of light. Just as light
beams are bent toward each other by passing on opposite sides of a
cosmic string, two space ships at rest with respect to each other can
be drawn toward each other after a cosmic string passes rapidly
between them. The two spaceships pick up a velocity toward each
other as the string passes between them. Now let one spaceship be
Earth and the other spaceship be the CMB. As a string moves by, it
causes a slight Doppler shift in the CMB in the distance behind it. If
the string is passing from left to right between the CMB and us, this
makes the CMB appear slightly hotter on one (the left) side of the
string than the other. We are searching for such effects. Oscillating
string loops, like vibrating rubber bands, can produce gravitational
waves and we can search for these in the future as well, with space-
based LIGO-type instruments. Thus we have a number of promising
ways to look for cosmic strings.

How might one possibly make use of the shortcut effect shown
by a single cosmic string? In 1991, I found an exact solution to
Einstein’s field equations in general relativity for two moving cosmic
strings. In this solution, two parallel cosmic strings move past each
other like the masts of two schooners passing in the night. String 1,
which is vertical, moves from left to right and string 2, which is also
vertical, moves from right to left. What does the geometry around
two cosmic strings look like?

Not surprisingly, two slices are missing this time. A cross-section
perpendicular to the two cosmic strings looks like a piece of paper
with two missing slices, and you can fold it up into a little paper boat
(figure 21.5). Laid out flat, we see the two missing slices, one
originating at string 1 and extending upward on the page, and one
originating at string 2 and extending downward on the page. (The
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two strings extend out toward you, perpendicular to the page.) Now
there are two shortcuts. If you start on planet A in the figure, you
can go to planet B on a straight-line path between the two cosmic
strings labeled path 2. But there is a shorter straight-line path 1 that
will get you to planet B faster, by going around string 1. Likewise,
another shortcut, straight-line path 3, will get you from planet B
back to planet A faster than going back by path 2. If you start at
planet A and go to planet B on path 1 traveling at 99.9999999% of
the speed of light, you can beat a light beam going directly to planet
B along path 2. Path 1 is shorter than path 2, because a “pizza slice”
is missing. That means you can depart planet A after the light beam
going along path 2 departs planet A and yet arrive on planet B
before the light beam arrives. Your departure from planet A and your
arrival at planet B are therefore two events that have a spacelike
separation along path 2: they are separated by more light-years in
space than years in time. You are beating the light beam and
therefore effectively going faster than the speed of light, because
you’ve taken a shortcut. That means that some observer moving
rapidly to the left—let’s call him Cosmo—will judge those two events
to be simultaneous. Because of his velocity (less than the speed of
light), he slices spacetime on a slant, like French bread, and judges
your departure from planet A to be simultaneous with your arrival on
planet B.
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FIGURE 21.5. Geometry around two cosmic strings.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)
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Now move the upper half of the solution rapidly to the right,
taking string 1 and Cosmo along with it. Now string 1 is not
stationary but rather moving rapidly to the right, and since motion is
relative, Cosmo is no longer moving to the left but is now just
standing still, in the center. Cosmo sees you depart planet A at 12:00
p.m. Cosmo time, and sees you arrive on planet B at 12:00 p.m.
Cosmo time. If you can do this trick once, you can do it twice. Slide
the bottom half of the solution rapidly to the left carrying string 2
along with it at an equally high speed (but slower than the speed of
light). You can depart planet B and travel along the shortcut path 3
and beat a light beam going to planet A along path 2. Your
departure from planet B and your arrival back at planet A will be
separated by more light-years of space than years of time. If the
bottom half of the solution is moved rapidly enough (but still slower
than the speed of light), then string 2 moves at nearly the speed of
light as seen by Cosmo, and Cosmo will observe your departure from
planet B and your arrival at planet A to be simultaneous. So, if he
sees you depart from planet B at 12:00 p.m. Cosmo time, he sees
you arrive back at planet A at 12:00 p.m. Cosmo time. But you
departed planet A in the first place at 12:00 p.m. Cosmo time. Your
departure from planet A and your arrival back on planet A are at the
same time and place. You can get back in time to see yourself off
and shake hands with your younger self! You have time traveled
back to an event in your own past. That is real time travel to the
past.

This is how it looks to you. You arrive at the spaceport on planet
A. An older version of yourself arrives and says, “Hello, I’ve been
around the strings once!” You will reply, “Really?” Then you depart
on your spaceship traveling around string 1 and arriving at planet B
traveling along path 1. Then you immediately depart from planet B,
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travel around string 2 and arrive back at planet A in time to meet
your younger self. You say, “Hello, I’ve been around the strings
once.” You hear your younger self reply, “Really?”

Does meeting your younger self somehow violate energy
conservation? After all, originally there was one of you and now at
that meeting there are two of you. No, because general relativity has
only local energy conservation. That means that the only way for the
mass-energy in a room to go up is for something to come into the
room. But as a time traveler, you are like anyone else who enters the
room. The mass-energy goes up because you enter. So there is local
energy conservation in these solutions.

It is important that the two strings pass each other going in
opposite directions. Then all you need is a spaceship to travel
around the strings, and you can come back to the time and place
you started. Michael Lemonick wrote an article on my time machine
for Time magazine; in it, he included a picture of me holding up two
strings along with a small model spaceship.

Curt Cutler at Caltech discovered a very interesting property of
my two-string solution. There was an epoch before which no time
travel to the past occurred. When the strings are very far apart in
the distant past, it takes a long time to circle them, and you always
arrive back home on planet A after you started. But when the strings
get close enough, when they are just passing each other, you can
circle the strings and get back in time to visit an event in your own
past. Such an event is in the time travel region. Figure 21.6 is a
three-dimensional spacetime diagram of this.
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FIGURE 21.6. Spacetime diagram of two-string time machine.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)
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Time is shown vertically, and two dimensions of space are shown
in perspective horizontally. Because String 1 is moving to the right,
its worldline is a straight line tilted toward the right. String 2 is
moving to the left, and its worldline is a straight line tilted toward
the left. The time traveler’s worldline is also shown. She is moving
slowly, so her worldline is nearly vertical until she arrives on planet
A. You can then see her depart at noon and circle the two strings,
arriving back at noon. She says hello to her younger self. She then
lives out the rest of her life, and her worldline is again nearly
vertical. Cutler found that the region of time travel is bounded by a
surface called a Cauchy horizon, which is shaped like two
lampshades, one inverted on top of the other. Note that the time
traveler approaching planet A starts out in the distant past in a
region where no time travel to the past is possible. She then crosses
a Cauchy horizon where time travel starts. After that point, she can
see time travelers arriving from the future. For a while time travel is
possible, but she eventually crosses the second Cauchy horizon
where time travel to the past stops. After that, she will encounter no
more time travelers arriving from the future. By then, the two cosmic
strings are so far apart that any time traveler can no longer circle
the strings and arrive back at the same time she started.

This answers Stephen Hawking’s famous question: “So where are
all the time travelers?” If time travel is possible, then why aren’t
famous historical events overrun with time-travel tourists from the
future? Why don’t we see time travelers from the far future with
their video cameras and silver space suits in the film footage of the
Kennedy assassination? The answer is that when you create a time
machine in the future by twisting spacetime, a Cauchy horizon is
created, and only at that point can you start to see time travelers
from the future. But these time travelers cannot travel back before
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the time machine was created. If you create a time machine in the
year 3000, then you can use it, in principle, to travel back from the
year 3002 to the year 3001, but you can’t use it to travel back
before the year 3000, because that’s when the time machine was
created. We haven’t seen such time travelers yet because we haven’t
built any time machines yet! This is also true of time machines built
from wormholes and warp drives, which we discuss shortly. But that
means that even if we inspect the past and find no time travelers
from the future, it is still possible for us, at some future time, to pass
through a Cauchy horizon and see time travelers from the future
suddenly appear.

We expect cosmic strings to appear both as infinite strings, like
the ones we have been discussing (as well as finite string loops).
And because they are under tension, we would expect infinite
cosmic strings to be whipping around at speeds of order half the
speed of light. But, in practice, you would not expect to be lucky
enough to find two infinite cosmic strings passing each other at the
requisite speed to create a time machine. Grand unified cosmic
strings would have to be moving at speeds of at least
99.99999999996% the speed of light (a bit slower than the speed of
light but still very fast) in order to produce a time machine. But you
could always find a loop of string and manipulate it gravitationally
using massive spaceships in such a way as to cause it to collapse by
a large factor due to its tension. A string loop is rather like a rubber
band. By flying massive spaceships near it, you could manipulate it
so that it snapped shut in just such a way that two very long,
straight sections of the string could pass each other at high enough
velocity to create a time machine. I was able to show (in my 1991
Physical Review Letters paper on the cosmic string time machine)



477

that the string loop in this case is just at the point of collapsing
inside a black hole that would form around it. That’s not good!

I showed that this is likely to trap the time-travel region inside
the black hole. Li-Xin Li and I would later find that the extra mass of
your rocket circling the strings in the time machine would likely also
help trigger the formation of a black hole around you.

The string loop would have two long straight segments of string
passing each other in opposite directions at high speed, and thus the
loop would have some angular momentum and therefore, the black
hole that was formed would be a rotating black hole.

So let’s discuss rotating black holes. As mentioned in chapter 20,
an exact solution to Einstein’s field equations for a rotating black
hole (one having angular momentum) was discovered by Roy Kerr in
1963. What happens in the interior of the rotating black hole
solution (inside the event horizon) was worked out by Brandon
Carter. The Kerr solution has two critical radii: r+, which marks the
event horizon, and r-, which is smaller and marks an inner, or
Cauchy horizon.

At the center of the Kerr black hole one finds not a pointlike
singularity but a ring singularity. Curvature only becomes infinite on
this ring (actually, nearly infinite, because quantum effects would
blur it out a little). If you hit the ring, the tidal forces (that Iron
Maiden plus rack effect described in chapter 20) would kill you. But
interestingly, the grad student who has fallen inside a rotating black
hole can avoid hitting the ring singularity. It does not block his way
to the future. The grad student first crosses inside r+ (the event
horizon) and then inside r- (the Cauchy horizon). The ring singularity
is inside the Cauchy horizon, and the grad student can see it the
moment he crosses the Cauchy horizon. If the grad student jumps
through the ring, like jumping through a hula hoop, he will enter an
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entirely new large universe (Universe 1). Carter showed that if the
grad student goes through the ring into Universe 1 and circles the
ring’s circumference while on the other side in a specific way, he can
actually jump back through the ring to our side before he entered.
The grad student can do a little time loop into the past and say hello
to his younger self just before he jumped through the ring initially.
Of course no one on the outside of the black hole can see any of
this, for it all happens inside the event horizon. Once the grad
student crosses inside the Cauchy horizon, he enters a region where
time travel to the past is possible—just as in figure 21.6. This
Cauchy horizon marks the beginning of an epoch of time travel—an
epoch entirely trapped inside the event horizon of the black hole.
The grad student will never be able to get back to our universe to
brag to his friends about his time-travel adventures. He can then
travel on into the future. In the spacetime diagram for this, the ring
singularity is off to one side and does not block the grad student’s
way to the future. He leaves the time travel region by crossing a
second Cauchy horizon (again just as in figure 21.6) and can then
pop out into yet another big universe like ours (Universe 2). He pops
out of what we would call a rotating white hole into Universe 2. He
can live out his life there, or jump back in the hole and voyage to
additional universes in the future. This is like getting on an elevator
in a multistory building. Imagine that you get in the elevator on the
ground floor—that’s our universe. The door closes and you go up—
there’s no getting back to the ground floor universe any more. You
have left it in your past. The door opens again, and you see a new
universe (Universe 1). You can exit the elevator by jumping through
the ring singularity, and you can visit Universe 1. You can stay in
Universe 1 until you die, or you can hop back into the elevator by
jumping back through the ring again. If you do, you will go on up,
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and the door will open to the next universe (Universe 2). You can
exit there and live there or just stay in the elevator and continue on
into the future, just looking out the opening and closing elevator
doors at new universes forever. But you will never get back to the
ground floor universe (our universe). The Kerr solution indicates that
all this occurs for a rotating black hole that has formed realistically in
the finite past in our universe.

But we must also consider some caveats.
As in chapter 20, the professor stays safely outside the black

hole. Photons sent by the professor that fall into the black hole can
be received by the graduate student even after he crosses the event
horizon. The professor could be sending the grad student messages,
such as “good work” or “keep going and you will have a great
thesis.” The grad student will receive them all. Between his crossing
the event horizon and his crossing the Cauchy horizon, two events
that occur a finite time apart to the grad student—of order a few
hours for a several-billion-solar-mass black hole—the grad student
will see the entire infinite future history of our universe external to
the black hole. News headlines will come at the grad student faster
and faster. The grad student will get in principle an infinite number
of newscasts from the outside in a finite amount of time before
crossing Cauchy horizon, according to the Kerr solution.

This would be good for historians. If the grad student were
curious about the future of our universe, he could find out the entire
infinite future history of our universe in a finite time. But this is
dangerous! Those speeded-up news reports would come in such
rapid sequence because they are carried by very blue-shifted
photons. The photons are blue shifted because they have fallen
inside the black hole and have gained energy. The photons are blue-
shifted by the same factor as the news reports they carry are
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speeded up. High-energy photons like this are gamma rays, and they
can kill the grad student. The photons would become arbitrarily
(approaching infinitely) blue-shifted as the grad student crossed the
Cauchy horizon, and they would form a curvature singularity along
the Cauchy horizon, blocking the way to the time travel region and
other universes in the future.

But this singularity along the Cauchy horizon may be weak.
Calculations by Amos Ori indicate that the tidal forces there may not
tear your body apart. The tidal forces may build up to infinity, but
stay there for only an infinitesimal amount of time. It would be like
going over a speed bump. The grad student would get a jolt but
could survive. The grad student might find his body was not
stretched infinitely (spagettified) but just stretched an inch, rather
like having a visit to the chiropractor’s office. Another unknown is
that the Cauchy horizon appears to be unstable: fluctuations at the
Cauchy horizon could grow, sending the part of the solution beyond
it off in new unpredictable directions. One thing in the grad student’s
favor is that we do not know the laws of quantum gravity—how
gravity behaves at microscopic scales. This Kerr solution to Einstein’s
equations of general relativity does not consider quantum effects.
We expect quantum effects to be important at microscopic scales
and to smear out singularities. This may help the grad student
through. But because we don’t know the laws of quantum gravity,
we really don’t know for sure what would happen. When we get a
grand unified theory of particle physics, we may be able to answer
this question. Meanwhile, the rotating black hole holds some secrets
still. One way to find out would be to jump in!

Now back to the string loop, which has just fallen inside a
rotating black hole and made a time machine. The Cauchy horizon
for time travel around the strings that Cutler found would become
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coincident with the Cauchy horizon in the rotating Kerr black hole
that forms. Once you cross the Cauchy horizon, you are in the time
travel region. We don’t have exact solutions for the collapsing-string-
loop case to guide us, but interestingly, in 1999, Sören Holst and
Hans-Jürgen Matschull found an exact solution for an analogous
lower-dimensional case (in flatland), where two particles (with
conical exterior geometries—just like cosmic strings) pass each other
at high speeds in a curved spacetime, creating a time machine
trapped inside a rotating black hole!

For the string loop case, we have to consider several possibilities
for what might happen. You might be able to circle the cosmic string
loop and come back to shake hands with your younger self, but you
would find yourself inside a black hole and, therefore, never able to
get back outside to report your adventures. Then you might be killed
by hitting a singularity. If you were really lucky, you might be able to
pop out in another universe, but still you could never come back to
see your friends. Even worse, you could be killed by hitting a
singularity before being able to time travel in the first place. We
don’t know which of these possibilities would occur.

Stephen Hawking has proven that if a Cauchy time-travel horizon
arises in a finite region and the matter density is never negative, a
singularity should form somewhere on the Cauchy horizon. Basically
it’s a theorem that says it is hard to make a time machine out of
normal material in your garage by only gently curving spacetime
(without ever forming a singularity anywhere). In the case of the
two infinite strings passing each other, the energy density is always
nonnegative everywhere, but since the strings are infinite, the
Cauchy horizon extends to infinity, and Hawking’s theorem does not
apply. But for the finite cosmic-string-loop solution, where we might
imagine actually creating a time machine, you might think a
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singularity would form on the Cauchy horizon inside the black hole.
This wouldn’t necessarily block your way, but you would at least see
it in the distance just as you crossed the Cauchy horizon. However, if
this Cauchy horizon is trapped inside a black hole (as I suspect), and
the black hole evaporates via Hawking radiation (as it must), then
the quantum vacuum state outside the black hole has a slight
negative energy density (causing the event horizon to shrink), in
which case Hawking’s theorem does not apply either. Thus it would
not necessarily violate any theorems to form a time machine trapped
inside a rotating black hole where you are not killed by a singularity
before you can cross the Cauchy horizon.

The fact that the black hole evaporates in a finite time means
that as you reach the Cauchy horizon, you do not see the entire
future of our universe before you cross (but just what happens prior
to the point the black hole event horizon shrinks to zero size by
evaporation). Therefore, you are not hit by arbitrarily highly
blueshifted photons from outside as you fall in. This is also helpful.

The Cauchy horizon is unstable, but we have fighter planes that
are designed to be unstable so that they can be managed by the
pilot to be very maneuverable, like balancing a tall pencil on its point
on your finger tip by moving your finger rapidly back and forth to
counteract it’s tendency to fall. Jugglers do this with rods all the
time. In principle, a supercivilization might be able to stabilize the
Cauchy horizon by actively perturbing it in the right way.

If you wanted to travel back in time a year by circling the
collapsing string loop once, (inside the black hole), this would
require finding and manipulating a string loop with a mass equal to
about half the mass of our galaxy. This is a project only a
supercivilization could even attempt.
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Would you be killed before doing the time travel? Would you
survive to time travel to an event in your own past, all within a
rotating black hole? To answer these questions, we will ultimately
need to understand the laws of quantum gravity—how gravity
behaves on microscopic scales. That’s one of the reasons this
problem is so interesting.

Moving cosmic strings are not the only time travel solutions to
Einstein’s equations of general relativity. The first one was a
nonexpanding but rotating universe solution proposed by the famous
mathematician Kurt Gödel in 1949. Even though our universe is
expanding, not rotating, Gödel’s solution showed that time travel to
the past was permissible in principle in general relativity. If one such
solution existed, there could be others. In 1974, Frank Tipler showed
that an infinitely tall, rotating cylinder could permit time travel to the
past. In 1988, Kip Thorne and his associates Mike Morris and Ulvi
Urtsever proposed a time machine using a traversable wormhole. In
general relativity, a wormhole is a short tunnel connecting two
distant points in curved spacetime. A traversable wormhole is one
that stays open long enough for you to get through it (unlike the
wormhole in the Kruskal diagram we learned about in chapter 20).
Such tunnels may exist, according to our understanding of general
relativity, although they have not yet been discovered. One end of
the tunnel might be near Earth, while the other end is at Alpha
Centauri, 4 light-years away. Yet the tunnel might be only 10 feet
long (figure 21.7).

If you sent a light beam from Earth to Alpha Centauri, it would
take 4 years to get there. But jump through the wormhole, and you
could be at Alpha Centauri only a few seconds later. In this way, you
could beat a light beam to Alpha Centauri by taking a shortcut
through the wormhole. What does the opening, or mouth, of the
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wormhole look like? In the diagram, it is shown as a circle, but that
diagram only shows two spatial dimensions. Actually the wormhole
mouth looks like a sphere. It looks like one of those shiny reflecting
balls one sometimes sees in a garden. This is correctly depicted in
the movie Interstellar, for which Kip Thorne served as physics
advisor. But don’t expect to see the reflection of your Earthly garden
in it. Instead you see a garden on a planet orbiting around Alpha
Centauri. Jump into that ball on Earth, and you pop out in that other
garden somewhere near Alpha Centauri.

FIGURE 21.7. Wormholes and warpdrives.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)
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Here’s how we can make that wormhole into a time machine.
Suppose you find such a wormhole on January 1, 3000. If you look
through the wormhole, you will see Alpha Centauri, but at what
time? If the two mouths (ends of the wormhole tunnel) are
synchronized, you would find the clocks on Alpha Centauri also
reading January 1, 3000. No time travel there. But now suppose you
pull out a massive spaceship and gravitationally pull the wormhole
mouth sitting near Earth on a 2.5-light-year journey out and back at
99.5% the speed of light. People on Earth would see that round trip
journey taking just over 5 years, with the wormhole mouth arriving
back on Earth on January 10, 3005.

Suppose an astronaut was sitting in the middle of the wormhole
tunnel. You would see him aging ten times more slowly, because he
was traveling at 99.5% the speed of light. During the trip, he would
only age 5 years divided by 10, or just 6 months. When he got back,
his clock would read July 1, 3000. But the wormhole tunnel is still
only 10 feet long. Its length does not change during the journey,
because its geometry is determined by the stuff inside the wormhole
tunnel and that has not changed. Furthermore, the astronaut is at
rest relative to the Alpha Centauri mouth, and the Alpha Centauri
mouth is stationary with respect to Alpha Centauri, because nothing
is moving it at that end. Thus the astronaut’s clock must remain
synchronized with Alpha Centauri. If you peer into the wormhole
when it returns and you see the astronaut’s clock reading July 1,
3000, when you look over his shoulder to the clocks behind him on
Alpha Centauri, they must read July 1, 3000 as well. Therefore, just
as the wormhole returns to Earth on January 10, 3005, you look
through the wormhole and see the Alpha Centauri clocks reading
July 1, 3000. You see your opportunity: you jump through the
wormhole and find yourself on Alpha Centauri on July 1, 3000. Get



486

in a spaceship and travel back to Earth at 99.5% of the speed of
light. The trip through ordinary space will take a little more than 4
years. You will arrive back on Earth on July 8, 3004. But you started
your trip on January 10, 3005, so you have arrived back before you
started. You have traveled back in time. You can visit an event in
your own past. You can shake hands with your younger self on Earth
on July 8, 3004, before you started on your trip. Notice how you
cannot use the wormhole to go back before the time machine was
created, when that one wormhole mouth near Earth was taken on a
trip. You can’t go back before the year 3000, for example, because
that was before the wormhole mouths were desynchronized.

The inspiration for this line of research started with Carl Sagan.
He was writing a science fiction novel called Contact. Neil told you
about the movie in chapter 10. For his plot, Sagan wanted his
heroine, Jodie Foster in the movie, to jump in a wormhole and
emerge near the star Vega, 25 light-years away. Carl wanted to be
sure to get the physics right, so he called up his friend Kip Thorne.
When Thorne and his associates investigated the physics of
wormholes, they found that wormholes have to be propped open
with some negative-energy stuff—stuff whose energy is less than
zero, stuff that is gravitationally repulsive. Light converges on a
wormhole, passes through the wormhole tunnel, and diverges on the
other side. That is the hallmark of the repulsive effects of negative-
energy stuff. Recall that there was a wormhole connected with the
black hole in the Kruskal diagram, but you couldn’t get through it to
the other side. You couldn’t get through to the other universe before
hitting a singularity and being torn apart. But with negative-energy
stuff, you could prop the wormhole open, enabling you to get
through. But where to find negative-energy stuff?
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Curiously, a quantum effect called the Casimir effect actually
creates negative-energy stuff. If you put two parallel metal
conducting plates close together, the quantum vacuum state
between the two plates has a negative energy density. Pressure
effects associated with the Casimir effect have been verified in the
lab by M. J. Sparnaay and S. K. Lamoreaux. The Hartle–Hawking
quantum vacuum state around a black hole also has a slight
negative energy density, which allows the black hole to evaporate
over time, decreasing the area of its event horizon. These two
examples show that you can make negative-energy stuff. Thorne
and his colleagues figured that if two spherical plates were placed in
the wormhole tunnel back to back, blocking the tunnel, with only a
10–10 cm separation between them, the Casimir effect between the
two plates could prop the wormhole open. You would open trap
doors in the plates to pass through. (Since these solutions involve
some negative-energy stuff, wormhole solutions can create a time
machine in a finite region in a singularity-free manner, because
Hawking’s theorem about that, which I discussed earlier, does not
apply.)

For the time machine proposed by Thorne and his colleagues,
each wormhole mouth would weigh 100 million solar masses and
have a radius of 1 AU. Building such a wormhole would be a massive
project, only conceivable for some supercivilization to attempt. The
only way to do this would be to find some microscopic quantum
wormhole mouths 1.6 × 10–33 cm apart and 1.6 × 10–33 cm in
diameter that are part of the quantum spacetime foam thought to
exist at microscopic scales. Then you would have to move them
apart and slowly enlarge them to 100 million solar masses each. This
is not something you are going to build in your garage! But the
recent work of Maldacena and Susskind suggests that microscopic
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wormholes connecting quantum entangled particles might give one
at least a place to start.

The other famous time machine is the warp drive from Star Trek.
This is a U-shaped distortion of space that also creates a shortcut
through space, for example, to Alpha Centauri. There is no hole, just
a U-shaped distortion (see figure 21.7). Physicist Miguel Alcubierre
has looked at this from the point of view of general relativity and
found that you need both some positive-energy stuff and some
negative-energy stuff to make it work, but it is theoretically possible.

Amos Ori has recently proposed a toroidal (doughnut-shaped)
time machine. Creative general relativity solutions involving time
travel are still being discovered.

Stephen Hawking thought that some quantum effects, yet to be
discovered, might always step in to prohibit time travel, even though
general relativity allows it. He proposed his Chronology Protection
Conjecture, suggesting that the laws of physics would somehow
prevent time travel to the past. Of course, it was just a conjecture.
He based it on some indications that the quantum vacuum state
might blow up (become infinite) as one approached the Cauchy
horizon and the region of time travel. Li-Xin Li and I found a
counterexample, which had a different quantum vacuum state that
did not blow up on the Cauchy horizon. Hawking’s student Michael J.
Cassidy found the same example from different reasoning. So it
appears that in some situations, you may be able to time travel.
Once again, to know for sure we will need to determine the laws of
quantum gravity.

In 1895, when H. G. Wells published his novel The Time
Machine, the known laws of physics, Newton’s laws, had a universal
time that everyone agreed on, and time travel to either the future or
the past was forbidden. Yet just 10 years later, in 1905, Einstein
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would prove that time travel to the future was possible. Cosmonaut
Gennady Padalka has already time traveled 1/44 of a second into the
future(see chapter 18). In 1915, Einstein’s theory of gravity, based
on curved spacetime, permitted shortcuts allowing you to beat a
light beam, thereby opening the door to time travel to the past.
Currently, several solutions to Einstein’s equations are known that
allow time travel to the past in principle. Our current situation is the
opposite of the one H. G. Wells found himself in when he wrote his
famous book. Einstein’s theory of general relativity, which has
passed every test we have devised so far, is our best theory of
gravity, and it does have solutions that allow time travel to the past
in principle, even if the means required are ones only a
supercivilization might attempt. We know how gravity behaves on
macroscopic scales, but we also know that on microscopic scales,
quantum effects must become important, and so we still need to
develop a theory of quantum gravity. We must successfully marry
general relativity and quantum mechanics in a workable theory to
understand whether we can actually construct a time machine to
visit the past. As we currently understand them, the laws of physics
seem to allow time travel to the past, but the question remains open
whether any laws of physics we will discover in the future will
prevent such time travel.

I explored the ideas of special and general relativity as they
relate to the possibilities of time travel in my book Time Travel in
Einstein’s Universe (2001). We do research on time travel to the past
in general relativity, not in order to fabricate a time machine at
present, but to discover clues about how the universe works. Time
travel solutions test the laws of physics under extreme conditions. In
chapter 23, I revisit time travel when considering the extreme
conditions at the beginning of the universe.
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22
THE SHAPE

OF THE UNIVERSE
AND THE BIG BANG

J. RICHARD GOTT

To discuss the shape of the universe, let’s first revisit the question of
how many dimensions the universe has. As we have said, we live in
a four-dimensional universe. You need four coordinates to locate any
event: three dimensions of space and one dimension of time. In his
theory of special relativity, Einstein showed that intervals between
events (at least in flat spacetime) can be measured by ds2 = – dt2 +
dx2 + dy2 + dz2. That minus sign in front of the dt2 term
differentiates the dimension of time from any dimension of space
and guarantees that all observers will agree that the speed of light is
constant.
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We can imagine a universe having a different number of space
and time dimensions. A universe with two spatial dimensions and
one time dimension would have intervals between events measured
by ds2 = –dt2 + dx2 + dy2. People living in that universe would not
know what the z coordinate was—they would not know about up
and down. These people would be living in Flatland. A picture of
Flatland (figure 22.1) shows a Flatlander standing in his house.

He has a doorway in the front, and he can even have a
swimming pool in his back yard. But if he wants to go swimming, he
has to go out his front door, climb over the roof, and dive off the
roof into the pool. He has an eye: it has a lens in the front and a
retina in the back. You may notice that we see his entire cross-
section. We can see the complete interior of his body. We are in a
position to give him a very good diagnosis of whatever might ail him,
because we can see all his internal organs. He has a mouth, an
esophagus, and a stomach, but no alimentary canal that goes all the
way through his body. If he did, he would fall apart into two pieces!
He must digest his food in his stomach and regurgitate the remains.
He is shown holding up a newspaper. Our newspapers are two
dimensional—they are pieces of paper; but his is one dimensional,
like a line. His newsprint consists of dots and dashes—Morse code. If
he wants to get in bed, he just has to do a back flip into bed. How
would his brain work? You can’t build neurons (or wires) that cross
in Flatland. But electromagnetic signals can cross each other in
Flatland, so you would just use electromagnetic waves to replace
neurons for sending signals from one cell to another. 1 In principle, a
Flatlander might have a brain, but it would be much more difficult to
arrange.
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FIGURE 22.1. Flatland and Lineland.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)

In 1880, Edwin Abbott wrote a wonderful book, Flatland, about
creatures living in such a world of two spatial dimensions. The
narrator was a square. 2

What would happen if there were only one dimension of space
and one dimension of time? This would be Lineland (also shown in
figure 22.1). Everything would be on a single line. Then we would
have ds2 = –dt2 + dx2. People would be line segments. You could
have a King and Queen and a Prince and Princess, but if you lived in
Lineland, you could see only the people directly to your left and
right. They would look like points. You had better like them, for you
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are never seeing anybody else. Intelligent life seems difficult to
achieve in Flatland, and hopeless in Lineland.

We can also imagine spacetimes with more dimensions of space
than we see. Suppose we add one additional dimension of space.
Then we would have ds2 = –dt2 + dx2 + dy2 + dz2 + dw2. This is a
spacetime with four dimensions of space and one dimension of time.
It has one extra dimension of space (w). In 1919, Theodor Kaluza
proposed that such an extra dimension existed. Why? Well, he found
a remarkable thing. If you believed Einstein’s equations of general
relativity and applied them in such a five-dimensional spacetime, and
the solution was uniform in the w direction, you would get
something equivalent to Einstein’s equations of general relativity in
four dimensions (normal gravity), plus Maxwell’s equations (as
updated by Einstein using special relativity)! A miracle!
Electromagnetism was equivalent to the action of gravity in an extra
dimension. This would unify gravity and electromagnetism. It seems
like too much of a coincidence that Einstein’s general relativity with
an extra dimension will automatically reproduce Maxwell’s equations.

Attractive as this finding was, this theory had one big trouble: it
didn’t seem to make any sense. Why don’t we see this extra
dimension? In 1926, Oskar Klein came up with an answer. He had
the idea that the extra dimension would be curled up like a soda
straw. A soda straw is a cylinder, a two-dimensional surface. It is
made from a two-dimensional piece of paper, after all. If creatures
lived on the surface of a soda straw, they would have to be two-
dimensional creatures, in other words, Flatlanders. It takes just two
coordinates to locate yourself on the surface of a soda straw: a
vertical coordinate to tell you how far up on the straw you are, and
an angular coordinate to tell you your location around the
circumference of the straw. But if the circumference is tiny and you
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look at the soda straw from a distance, it looks one dimensional, like
Lineland. We only notice the macroscopic dimension of the straw—
the dimension along its length. If the circumference of the straw is
smaller than an atom, we won’t see that circumference at all.

Thus Kaluza–Klein theory explains electromagnetism. Positively
charged particles circle the soda straw in the counterclockwise
direction, whereas negatively charged particles circle the straw in the
clockwise direction; neutral particles like the neutron do not circle. If
the soda straw is bent like a bow, then the clockwise and
counterclockwise geodesics can bend differently in the macroscopic
directions, because they have different starting velocities in the small
extra dimension. This would explain how positively charged particles
in an electric field could accelerate in the opposite macroscopic
direction from negatively charged particles. Since their velocities in
the small circumferential direction would be different, they would
move on different geodesics. It also explains why charge is
quantized. The wave nature of particles means that only an integer
number (1, 2, 3, . . .) of wavelengths can circle the circumference of
the soda straw. That means that the momentum of particles in the w
direction (which depends on their wavelengths and is equal to their
charge) must be an integer multiple of the charge on the proton or
the electron. Given the observed size of the electric charge of the
proton and electron, we can solve for the circumference of the soda
straw: it is 8 × 10–31 cm. That is smaller than an atomic nucleus and
explains why we don’t see the extra dimension.

After he invented general relativity, Einstein dreamed of finding a
grand unified theory of physics that would unify all the forces of
nature. It is fair to say that Kaluza and Klein made some progress
toward that goal: they unified electromagnetism and gravity.
Electromagnetism was just gravity operating in a curled-up extra
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dimension. But the Kaluza–Klein theory had something in addition:
the circumference of that straw might vary in time and from place to
place. That was equivalent to having a scalar field that could vary
from place to place in spacetime. A scalar field is a field that has a
magnitude but does not point in any particular direction.
Temperature is a scalar field. Wind velocity is a vector field, because
it has a speed and points in a specific direction (north, for instance).
In this case, the scalar field would be the magnitude of the
circumference of the extra dimension at that point, and therefore,
the magnitude of the electric charge of an electron at that location.
If one wanted just general relativity and Maxwell’s equations, that
circumference would have to stay fixed and not vary, because we
always observe electrons to have the same electric charge, wherever
we find them. If the circumference did vary, that would cause the
electric charge of an electron to vary, which is not observed. It was
not clear what would cause the circumference of the straw to remain
fixed. If it were fixed, as one might like, their theory gave no new
predictions; it gave the same predictions as standard general
relativity plus standard Maxwell’s equations. Einstein was lucky—his
theory of general relativity gave different predictions than Newton’s
theory did (concerning Mercury’s orbit and light bending), and these
could be tested. But Kaluza and Klein had no new predictions, so the
theory could not be tested, and they got no Nobel Prize.

Today we know of four forces: strong and weak nuclear forces,
electromagnetism, and gravity. The strong nuclear force is what
holds the atomic nucleus together, and the weak nuclear force is
important in some forms of radioactive decay. Steven Weinberg,
Abdus Salam, and Sheldon Glashow won the 1979 Nobel Prize in
Physics for unifying the weak force with electromagnetism. Their
theory predicted that, just as the photon is the carrier of the
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electromagnetic force, cousins of the photon, the heavy W+, W–, and
Z0 particles, would be carriers of the weak force. These particles
were discovered at the CERN particle accelerator (near Geneva);
Carlo Rubbia and Simon van der Meer shared the Nobel Prize in
1984 for this work. Strong and weak nuclear forces and
electromagnetism are all treated in the Standard Model of particle
physics. Recently, researchers using the Large Hadron Supercollider
in Europe discovered the Higgs boson, which was a prediction of the
theory. The Higgs boson is the particle associated with the Higgs
field, a scalar field that permeates space and gives the W+, W–, and
Z0 particles their mass. The Standard Model of particle physics has
been very successful, but currently offers no explanation for dark
matter or for the nonzero masses of neutrinos. Also, the strong,
weak, and electromagnetic forces have not yet been unified with
gravity.

Today our best hope for a grand unified theory that will bring
together all four forces is superstring theory. This is based on the
idea that elementary particles are not pointlike but rather are tiny
lengths of string about 10–33 cm long. These strings are like the
cosmic strings we have talked about, in that they have positive mass
and a tension along their length. But instead of a microscopic
thickness, the superstrings have zero thickness. Different vibration
states in the string make for different elementary particles—quarks,
electrons, and whatnot. Ed Witten has shown that the five different
versions of superstring theory along with another theory called
supergravity are actually limiting cases of one overarching theory,
which he has dubbed M-theory. In M-theory, spacetime is eleven-
dimensional, with ten dimensions of space and one dimension of
time. It posits the three macroscopic dimensions of space that we
know, plus seven more tiny, curled-up spatial dimensions. If I were
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trying to explain to a Linelander what a soda straw was like, I would
say it is like a line, except that every point on that line is not a point
but actually a tiny circle. If we had two extra dimensions of space,
that would be a tiny two-dimensional surface: not a circle, but
perhaps the surface of a tiny donut. In M-theory, the seven curled-
up dimensions are in some tiny pretzel shape, one that should
explain the strong, weak, and electromagnetic forces. Everywhere
you think there is a point in space, there is actually a tiny seven-
dimensional, curled-up pretzel shape. Many shapes are possible. The
goal is to find the right shape, the one that will explain the particle
physics that we observe.

It’s rather like the conundrum Watson and Crick faced when they
were trying to find the structure of the DNA molecule. Many
structures seemed possible, but what was the right one? When they
finally solved the problem, the resulting structure could explain how
chromosomes could divide and produce separate but identical
copies. The answer was the double-helix geometry of DNA that
could unzip and attract complementary base pairs to form two
identical helixes. Likewise in physics, we are hoping to find the
microscopic geometry of extra space dimensions that will explain the
physics we see. Many people are working on this today, traveling
down a path laid down by Kaluza and Klein. Lisa Randall and her
colleague Raman Sundrum have explored how a highly curved extra
dimension might explain why gravity is so weak relative to other
forces. If someone finds a version of M-theory with testable
predictions that agree with observations, then that person will have
achieved Einstein’s dream of finding the unified theory of particle
physics, and he or she will move up into the company of Newton
and Einstein. It is an exciting prospect.
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Having examined the microscopic universe, we are now ready to
look at the macroscopic universe. We would like to make a single
map that would encompass the entire universe, that would show us
interesting things from the Hubble Space Telescope in low Earth
orbit, to the Sun and planets, to stars and galaxies, to distant
quasars and the cosmic microwave background (CMB) radiation, the
most distant thing we can see. The problem is that our galaxy is tiny
compared with the visible universe, and the solar system is a
microscopic dot relative to our galaxy. It is a challenge, therefore, to
map the universe on one comprehensive map and display everything
of interest to us.
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FIGURE 22.2. Equatorial cross-section through the visible universe. We are at the
center of the region we can see. Each dot represents a galaxy (green) or quasar
(orange) with a redshift measured by the Sloan Digital Sky Survey. (The central
portion of this diagram was previously illustrated in figure 15.4.) The cosmic
microwave background forms the perimeter. Photo credit: J. Richard Gott, Robert
J. Vanderbei (Sizing Up the Universe, National Geographic, 2011)
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Figure 22.2 is a cross-sectional map of the entire visible universe,
looking out from Earth’s equator. Earth is at the center of the map.
We are at the center of the visible universe not because we are at
any special position, but because we are, not surprisingly, at the
center of the region we can see. In the same way, if you go to the
top of the Empire State Building, you will see a circular region
bounded by the horizon that is centered on the Empire State
Building. From the top observation deck of the Eiffel Tower, you will
see a circular region centered on it. In this map of the visible
universe, the most distant thing we can see, shown around the
circumference, is the CMB (as observed by the WMAP satellite).
Inside this circle we see, plotted as dots, 126,594 galaxies and
quasars from the Sloan Digital Sky Survey. The two fan-shaped areas
filled with dots show a cross-section of the regions the survey
covered. The blank fans are regions not covered by the survey. You
can see the Sloan Great Wall (discussed in chapter 15) in the
picture. Quasars are seen out to greater distances than galaxies. As
you know, when we look out in space, we look back in time. The
look-back time in billions of years is shown in the figure. Our Milky
Way is just a dot at the center of this picture—and the locations of
nearby stars and the planets in our solar system are all invisible,
being microscopic.

The map we really want is one like that famous New Yorker cover
by Saul Steinberg, called “The View of the World from 9th Avenue.”
It shows a New Yorker’s view of the world. The buildings of
Manhattan loom large in the foreground. The Hudson River is
smaller, with “Jersey” a mere strip on the opposite side. The Midwest
is compressed to about the width of the Hudson River, and the
Pacific ocean is an equally narrow strip, bordered by Asia beyond.
The things important to a New Yorker are shown at large scale,
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whereas more distant lands are shown as tiny. It is just the sort of
view we want our map of the entire visible universe to have. We
want objects in the solar system that are important to us to be
shown large and more distant objects to be shown at a reduced
scale.

When I was a graduate student, in the 1970s, I developed a map
projection to do just this. I have made different versions of it over
the years. I made a pocket version of it in the 1990s.

This Map of the Universe is a conformal map of the universe.
Conformal means that it preserves shapes locally, as the Mercator
map of Earth does. Iceland has as good a shape on the Mercator
map as does Cuba. Local regions are shown in their true shapes,
being neither squashed nor stretched in one direction. That’s why
the Mercator map is used on Google Maps. If you enlarge a little
region for closer examination, it will have the proper shape. But sizes
are wrong; Greenland appears to be about the same size as South
America on a Mercator map, but on the globe, its true area is about
1/8 as large. My map is similar, since objects farther away from
Earth are depicted at smaller scale, but with the correct shapes.

Mario Jurić and I made a large professional version of this map in
2003, which ended up being picked up by New Scientist and The
New York Times and reprinted 1.5 million times. It was published in
the Astrophysical Journal in 2005. The Los Angeles Times compared
it with Mercator’s map and Babylonian maps and called it “arguably
the most mind-bending map to date.” Bob Vanderbei and I have
made a full-color, large-scale version of the map (which is displayed,
rotated by 90°, on the next three double-page spreads—figure
22.3). Turn the book 90° counterclockwise, and flip the pages to see
the bottom, middle, and top third of the map.
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From left to right it is a 360° panorama looking out from Earth’s
equator. The horizontal coordinate is celestial longitude. The vertical
coordinate shows distance from Earth, and each large tick mark
represents a factor of 10 farther away from the center of Earth.
Objects that are 10 times farther away are shown at 1/10 scale and
so forth. The farther away an object is, the smaller it is depicted.
One can see Earth’s surface at the equator as a straight line. You
can see the Moon, Sun, and planets. Much farther up are the stars,
starting with Proxima Centauri, Alpha Centauri, and Sirius. Still
farther up we see the bulk of the Milky Way. Beyond that are the
galaxies M31 and M81. Then the galaxy M87. The Great Wall,
discovered by Margaret J. Geller and John Huchra, is a large
filament, or chain, of galaxies. Beyond, as a line at the top of the
map, is the CMB, the most distant thing we can see, which
surrounds us, encompassing 360°.

This map is a snapshot of the visible universe at 4:48 Greenwich
Mean Time, August 12, 2003, in a slice 4° wide centered on Earth’s
equatorial plane (although we also show some famous objects
outside those limits). The satellites and planets are shown in their
positions at this time, and galaxies are shown at the distances from
us they would have attained by this time—that is, they are shown at
their co-moving distances. We show all known Kuiper belt objects at
the time. We show all known asteroids within 2° of the equatorial
plane. Below Earth’s surface would be its mantle and core. The
atmosphere is shown as a thin blue line above Earth’s surface,
stretching out to the ionosphere. We show all 8,420 artificial
satellites orbiting Earth. You can see the International Space Station
(ISS) as well as the Hubble Space Telescope. The moon is full,
located 180° away from the Sun. Mars is shown at its closest
approach to Earth in its orbit. The planets Mercury, Venus, Jupiter,
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Saturn, Uranus, and Neptune are also depicted. Ceres, the largest
asteroid (at 945 km), is shown. Quaoar, a Kuiper belt object
discovered well after Pluto, is shown, along with Pluto itself. The
map includes some stars having planets, such as HD 209458, which
has a Jupiter-sized planet in a close orbit. It includes the seven-
solar-mass black hole Cygnus X-1 and the galaxy M87, which harbors
a 3-billion-solar-mass black hole in its nucleus. The Hulse–Taylor
binary pulsar, which we mentioned in chapter 11, is a system of two
neutron stars locked in a tight orbit; they are slowly spiraling inward,
because the system is emitting gravitational waves, just as Einstein
predicted. Hulse and Taylor won the 1993 Nobel Prize in Physics for
this discovery. Near the top of the map are the 126,594 galaxies and
quasars from the Sloan Digital Sky Survey. They appear in two
vertical bands with blank regions in between, representing regions
that the survey did not cover. These are the same fan-shaped
regions shown in figure 22.2, just replotted according to this new
map.
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FIGURE 22.3. Map of the universe.
Photo credit: Adapted from J. Richard Gott and Robert J. Vanderbei (Sizing up the
Universe, National Geographic, 2011)
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This map includes the Sloan Great Wall of Galaxies, which Mario
Jurić and I measured in 2003 to be 1.37 billion light-years long and
found to be the largest structure in the universe known at the time.
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It is about twice as long as the Great Wall of Geller and Huchra. But
because it is three times farther away, it is shown at one-third scale
on the map. Thus, on the map it looks about two-thirds the size of
the Great Wall of Geller and Huchra, although it is actually twice as
large. The Sloan Great Wall was listed in the 2006 Guinness Book of
Records as the largest structure in the universe. I never expected to
be find myself in the Guinness Book of Records, and I didn’t even
have to eat 68 hotdogs in 10 minutes or collect the largest ball of
twine! It held the record until 2015, when surpassed by a longer wall
from a deeper survey.

The map shows 3C 273, the first quasar whose distance was
measured, as discussed in chapter 16. We show the Subaru galaxy,
the most distant galaxy known at the time, and GRB 090423, a
gamma-ray burster, the most distant object detected at the time
(most likely a supernova). At the very top of the map is the CMB, the
most distant thing we can see. I got interested in astronomy when I
was 8 years old. At that time there were no Kuiper belt objects
known (except Pluto), no exoplanets, no pulsars, no black holes, no
quasars, no gamma-ray bursters, and no observation of the CMB.
This map shows how much we have progressed in just one
astronomical generation.

Now let’s talk about the geometry of the universe on large
scales. When Einstein completed his equations of general relativity,
he wanted to apply them to cosmology. His equations told how
energy density and pressure caused spacetime to curve. One of the
solutions to his equations was flat empty spacetime, but he wanted
to find a cosmological solution (i.e., one that would apply to the
universe as a whole). The trouble was that his equations would not
produce a static solution. Newton conceived of a static universe,
with stars arrayed in infinite space, at a more or less constant
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number density. Each star felt a gravitational force from each of the
other stars, but since these forces were pulling it equally in all
directions, they canceled out, and the stars would each stay put
where they were. This led to a static model, which people believed
was a correct description of the universe. They didn’t know about
galaxies in Newton’s day. Such an idea, of forces operating in
different directions but canceling each other out, might work if you
had a notion of absolute space as Newton did. But in Einstein’s
theory, if you tried to produce a model that was initially static, the
attraction of all the galaxies for one another caused the universe to
start to collapse. Yet Einstein too thought the universe was static
(remember, this was soon after his development of general relativity
in 1915; Hubble’s work on the nature of galaxies and the expansion
of the universe was a decade or more away). Einstein knew only of
stars (in the Milky Way), and they had velocities with respect to our
Sun that were small relative to the speed of light—basically static, he
thought. To address this problem, Einstein did something very
unusual: he added an extra term to his equations! It is called the
cosmological constant, and it acts to counter the tendency of the
universe to contract under gravity.

Today, physicists would say that this is equivalent to Einstein
proposing that the vacuum of empty space actually had a small
positive energy density. (Georges Lemaître first made this point in
1934.) What do I mean by that? If you were to take all the stuff out
of your room—any people, chairs, or atoms in the air filling the room
—and you got rid of all the photons and other particles too, you
would be left with empty space, a vacuum. We would expect its
energy density to be zero. But suppose the vacuum of empty space
had a positive energy density. Then, for astronauts traveling in
rocket ships at different speeds to each measure the same energy
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density—for there to be no preferred frame of rest—it must be true
that the vacuum must also have a negative pressure, operating
equally in each of the three directions of space. This vacuum
pressure has to have a negative sign (opposite to that of the energy
density). Recall that in the equation ds2 = –dt2 + dx2 + dy2 + dz2,
the term corresponding to the time direction (–dt2) has a sign
opposite to that of the terms corresponding to the three dimensions
of space. This equation for ds2 takes the same form for a moving
astronaut. It has no preferred standard of rest. In the same way,
neither does a vacuum with positive energy density (associated in
Einstein’s theory with the time dimension) and a negative pressure
of the same magnitude operating in the x, y, and z directions. Now if
you could put some of this vacuum inside a box, the negative
pressure would pull the sides of the box together, tending to make it
collapse. But if it were spread uniformly, you wouldn’t notice it. In
weather, it is pressure differences that cause forces; they enable
wind to knock things down. But if the pressure is uniform, you don’t
notice it. In your room, the air pressure is about 15 pounds per
square inch, but you don’t notice it. Because it’s uniform, it’s not
pushing you around. Likewise, since the pressure of the vacuum is
uniform throughout space, it creates no hydrodynamic forces.
However, it does have a gravitational influence.

Energy density is attractive. It pulls things together. In Einstein’s
equations, pressure gravitates as well as energy density. This is
something Newton wouldn’t have thought of, but in Einstein’s
equations, it is the stress–energy tensor Tμν that causes spacetime
to curve, and this has pressure terms as well as an energy-density
term. In Einstein’s theory, therefore, pressure gravitates. Positive
pressure attracts, whereas negative pressure is gravitationally
repulsive. Since the pressure in the vacuum operates in three
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directions, the gravitational repulsive effects of the negative pressure
outweigh the gravitational attraction of the positive energy density of
the vacuum by a factor of 3 to 1, and the overall gravitational effect
of the vacuum is repulsive. Today we call this nonzero vacuum
energy density (with its accompanying negative pressure) dark
energy. It is called dark because you can’t see it, and energy
because the vacuum has a positive energy. As Neil has emphasized,
astronomers like simple names.

FIGURE 22.4. Einstein static universe. This is a spacetime diagram. Time is the
vertical dimension, with the future toward the top. We are showing only one
dimension of space (around the circumference of the cylinder) and one dimension
of time (the vertical direction). Worldlines of stars (or galaxies) in this model are
the straight green lines (geodesics) going straight up the cylinder. The
circumference of the cylinder is not changing with time—the model is static. The
only thing real in this figure is the cylinder itself—the inside and outside have no
significance.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)
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To create his 1917 cosmological model, Einstein supposed stars
were spread uniformly in space; because they were gravitationally
attractive, he balanced this with the gravitational repulsion of the
cosmological constant. This would produce a static model—one with
a particular geometry. The spacetime diagram of the Einstein static
universe looks like the surface of a cylinder (figure 22.4).

In this diagram, we are only showing the dimension of time plus
one dimension of space. We are for the moment leaving out the
other two dimensions of space for purposes of visualization. Time is
the vertical coordinate, and the cylinder is vertical. It has a circular
cross-section at any given time. The circle represents one spatial
dimension. It is Circleland. A Linelander might not live on an infinite
line, Lineland, but might instead live on the circumference of a
circle: Circleland. How would the Linelander know she lived in
Circleland? Well, after she had traveled a distance 2πr in one
direction, she would find herself back where she started. This is a
closed cosmological model where the universe closes on itself to
form a circle. The worldlines of the stars (or galaxies) are straight
green lines going vertically up the cylinder. These are geodesic
paths, as straight as possible. You could drive a little truck straight
up the cylinder without turning its steering wheel. The galaxy
worldlines are parallel. The galaxies are not getting closer together
or farther apart with time. The circumference of the universe is not
changing in time. This is Circleland, where the radius of the circle is
not changing with time. All these properties confirm that it’s a static
model. The gravitational attraction of the galaxies is exactly
balanced by the overall gravitationally repulsive effects of the
cosmological constant (which we would now call “dark energy”).

Now let us discuss the two extra spatial dimensions we have left
out of the diagram. Actually the geometry of this universe is not a
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circle or a sphere but what we call a 3-sphere. What is a 3-sphere? A
circle is the set of points at a distance r from a central point on a
Euclidean plane. A sphere is the set of points at a distance r from a
central point in a three-dimensional Euclidean space. The sphere
itself is a two-dimensional surface. A Flatlander might live on the
surface of a sphere. He would discover that if he went straight in
any direction, he would find himself back where he started after
traveling a distance of 2πr. He also could discover he was an
inhabitant of Sphereland by drawing a triangle with three right
angles in it, connecting the north pole of the sphere with two points
90° apart on its equator (as shown in figure 19.1) . This is not
Euclidean plane geometry. Any cross-section of a sphere is a circle.
(Interestingly, Mark Alpert and I proved that if Einstein had lived in
Flatland, where point masses do not gravitationally attract one
another, he could have devised a Sphereland static universe without
having to introduce a cosmological constant. But Einstein did not live
in Flatland—he had to use a sphere of one higher dimension!) The
circle and the sphere, as we typically know them, could be called a
1-sphere and a 2-sphere, respectively. The 3-sphere is simply a one-
dimension-higher version of a sphere: it is the set of points at a
distance r from a central point in a four-dimensional Euclidean
space. Distances between points in this four-dimensional Euclidean
space are measured by ds2 = dx2 + dy2 + dz2 + dw2. (There is no
dimension of time here.) We have added a term for w, which is an
extra spacelike dimension. The 3-sphere is the set of points where r2

= x2 + y2 +z2 + w2.
Just as a circle is a curved, one-dimensional closed line, and a

sphere is a curved two-dimensional surface, the 3-sphere is a curved
three-dimensional volume. A circle has a finite circumferential length
(2πr), the sphere has a finite surface area (4πr2), and the 3-sphere
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has a finite surface volume (2π2r3). If you live in a 3-sphere
universe, and you set off going north, always flying straight ahead,
you will eventually come back to where you started after traveling a
distance of 2πr. You will arrive back home from the south after
having circled the universe. If you set off going east, always flying
straight ahead, you will come back to your home planet from the
west after traveling a distance of 2πr and circumnavigating the
universe. But also if you leave home traveling straight up, you will
return to your home planet from below after traveling a distance of
2πr. This is a three-dimensional universe that, like ours, has three
pairs of directions—north-south, east-west, and up-down—but no
matter which way you start off, you will come back to where you
started. An intrepid traveler in Einstein’s 3-sphere universe could
explore distant galaxies and be sure to return to her home galaxy, as
long as she kept going straight on a geodesic route in any direction.
She would always, boomerang-like, return home. The space is
bounded but has no edges, or boundaries, to stop her travels.

A 3-sphere universe is closed with a finite volume and a finite
number of galaxies. For example, if galaxies had a mean separation
of 24 million light-years, the mean volume per galaxy would be (24
million light-years)3. If the radius of curvature of the static 3-sphere
universe were 2,400 million light-years, then the volume of the 3-
sphere universe would be 2π2 (2,400 million light-years)3. Now
(2,400 million)3 /(24 million)3 is 1003 or a million. That would mean
that this universe would have 2π2 million galaxies; that is, about 20
million galaxies. If you lived in an Einstein static universe, you would
find that galaxies were not moving apart and that there were a finite
number of them. Astronomers living in such a universe could identify
and count them all.
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In a 3-sphere universe, there are no special observers; each
galaxy location is similar to every other one, just as there are no
special points on the surface of a sphere. On Earth, all observers can
think of themselves as at the center (i.e., sitting on top of the
sphere). To us on Earth, it seems as if we are standing on top of the
world right now. We are standing straight up, so everyone else must
be hanging off the sides! People in Australia must be hanging upside
down! But anyone can think he or she is at the center. In Beijing,
there is a circular platform that was supposed to represent the
center of the world. In England, they put the 0° longitude line—the
“prime meridian”—right through Greenwich, a suburb of London,
where they had an observatory. All of us can think we are at the
center, because all points are equivalent. Importantly, if you lived in
a 3-sphere universe and you counted galaxies, you would find an
equal number in all directions. The counts would be isotropic, that is,
independent of direction—just as Hubble found.

Einstein published his static cosmology in 1917. The cosmological
constant term he added to his equations provided an extra curvature
to empty space, but it was very small and therefore did not interfere
with any of his solar system tests of general relativity. Furthermore,
adding this term did not alter the fact that the equations would
preserve local energy conservation! Einstein was probably the only
person at that time clever enough to figure out such a fix to produce
a static universe.

Meanwhile in Russia, in 1922, Alexander Friedmann found a
cosmological solution to Einstein’s original field equations (without
the cosmological constant). Friedmann’s solution just had ordinary
stars (or galaxies in it). It was a dynamical solution (not static),
making it harder to solve. In his model, the geometry of the universe
was a 3-sphere just as Einstein had proposed, but now the radius
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was allowed to change with time. He found a solution (see figure
22.5) whose spacetime diagram looked like a vertical football (teed
up, ready for kickoff).

Time goes vertically in this diagram, with the future toward the
top. We are showing one dimension of time and one dimension of
space in this diagram. The dimension of space is shown as a circular
cross-section (Circleland) whose radius changes with time. The 3-
sphere universe starts with zero radius at the Big Bang (at the
bottom). Then it expands to larger circumference with time until it
reaches a maximum circumference in the middle of the football, and
then begins to shrink, finally collapsing to zero radius at a “Big
Crunch” at the end. Galaxy worldlines are green geodesic lines going
along the seams in the football starting at the Big Bang and ending
at the Big Crunch. These worldlines are as straight as possible. You
could drive a little truck along them and not have to turn your
steering wheel. This shows Einstein’s equations working at their
best. The mass of the galaxies is causing the spacetime to be
curved, and the curvature of the spacetime causes the worldlines of
the galaxies—the seams—to bend. The seams spread apart from the
bottom, but the curvature of the surface of the football draws them
back together at the Big Crunch. At the Big Bang, the galaxies are all
flying apart from each other at the beginning. But gravitational
attraction (curvature) slows their expansion to a momentary halt in
the middle, at the football’s equator, and eventually, in the upper half
of the football, it causes the galaxies to start moving toward one
another. The distances between galaxies start decreasing as the
circumference of the universe begins to shrink. They all crash
together at the Big Crunch. You don’t want to be around then! As
the volume of the universe shrinks to zero, you will be crushed. You
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will hit a Big Crunch singularity where the curvature becomes infinite
—like the singularity in a black hole.

FIGURE 22.5. Friedmann Big Bang universe. This spacetime diagram also shows
only one dimension of space (the circumference of the football shape) and one
dimension of time (vertical). Worldlines of galaxies are the vertical green seams in
the football. They are geodesics—the straightest lines you can draw on the
surface. The mass of the galaxies causes the curved shape, and the worldlines
follow geodesics in the curved surface. The universe is dynamic, with a Big Bang
at the beginning. The galaxies move apart at first as the circumference of the
universe gets larger with time. This is an expanding universe. But eventually the
gravitational attraction of the galaxies causes the universe to start contracting, and
it ends with a Big Crunch at the end. The only thing real in this picture is the
“pigskin” itself—the inside and outside of the football have no significance.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)

I should emphasize that the only thing that is real here is the
“pigskin” itself. The inside of the football is not real, and the outside
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of the football is not real. We are only plotting the football in a
higher dimensional space so that we can visualize it.

Time begins at the Big Bang—a singularity of infinite curvature is
there. We started discussing the Big Bang in chapter 14. What
happened before the Big Bang? This question makes no sense in the
context of general relativity, because time and space were created at
the Big Bang. It’s like asking what is south of the South Pole. If you
go farther and farther south, you will eventually get to the South
Pole. But you can’t go farther south than the South Pole. Likewise, if
you go farther and farther back in time, you will eventually get to
the Big Bang. That’s when time and space were created, so that’s
the earliest you can go. Aristotle liked a universe that was infinitely
old, because you would not have to ask how it got started; if it had
a beginning, a first cause, then you would have to explain what
caused the first cause, he worried. Einstein and Newton liked
infinitely old universes also. But Friedmann’s universe started with a
Big Bang at a finite time in the past, when both space and time were
created.

Although Friedmann published these solutions in 1922, almost
nobody paid any attention to them. Einstein thought they were an
interesting mathematical solution to his field equations, but he
thought his static model was what actually applied to the universe.
Then, as we saw in chapter 14, Hubble discovered the expansion of
the universe in 1929. Friedmann’s model had predicted that the
universe should be either expanding or contracting. Now Hubble had
found that the galaxy worldlines were indeed moving apart. Where
would that put us in Friedmann’s model? We’d be in the lower half of
the vertical football, during the expansion phase when the galaxy
worldlines were diverging. With further data in 1931, Hubble and
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Humason found distant galaxies receding from us at up to 20,000
km/sec, cementing the result that the universe was expanding.

After hearing of Hubble’s results in 1931, Einstein told George
Gamow that the cosmological constant was the biggest blunder of
his life. Why? No one had paid any attention to Friedmann’s paper.
But suppose Einstein had not thought of the cosmological constant;
he would have had to abandon a static model and might have
discovered Friedmann’s model himself. If Einstein had published the
same model Friedmann published, the whole world would have
listened. Einstein could have been the one to predict in advance that
the whole universe must not be static, but rather it must be either
expanding or contracting. Then, when Hubble discovered the
expansion of the universe, it would have been a great further
confirmation of Einstein’s theory of general relativity. It would have
been Einstein’s greatest triumph. Remember, no one had talked
about anything like an expanding universe before. People would
have asked: Expanding into what? But in Einstein’s theory, curved
space itself could be expanding. It’s not expanding into anything (no
inside of the football, no outside of the football—just the football
itself); it’s just stretching. It’s the space connecting all the galaxies
that is just getting bigger. Amazing. Appreciating all this, Einstein
declared the cosmological constant his biggest blunder. Later, in
chapter 23, we will point out that if Einstein were around today, he
might have reason to revise that assessment.

Friedmann’s model was not the only model using only normal
matter that you could imagine (i.e., having none of that negative
pressure, dark energy stuff). What is the most general model of this
type you could construct? To us the universe looks isotropic (the
same in all directions). Hubble observed equal counts of galaxies in
all directions, and he observed galaxies fleeing from us equally in all
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directions. Now, as Michael discussed in chapter 14, you might think
this meant that we were at the very center of a great explosion. If
you were off to one side, you might expect to find more galaxies in
the direction of the center than in the opposite direction. But if you
were in the very center, you would expect to see equal numbers of
galaxies in different directions. But after Copernicus, we were not
going to believe that. No, we could not be the one special galaxy at
the center when all the others were off center. If you apply the
Copernican Principle that our position in the universe is not likely to
be special, then the universe must look isotropic to an observer on
any galaxy (otherwise we would be special). From a galaxy way over
there, the universe must look isotropic as well. If all observers see a
universe that is the same in all directions, then the universe must be
homogeneous.

If the density of galaxies in one region were greater than in
another region, an observer next to this region would see more
galaxies in the direction toward the density enhancement than in the
opposite direction, and his results would not be isotropic. Of course,
on small scales, we do see galaxy clusters, but on large scales, we
see equal counts of galaxies in different directions. Therefore, it is
on large scales that the universe must be isotropic and
homogeneous. The only homogeneous isotropic models in general
relativity are ones having uniform curvature. If the curvature were
greater in one region than in another, at a given epoch, it would not
look the same in all directions to every observer. In an isotropic
model, there are no special directions for this curvature, so the
curvature must be the same in all directions and of a constant value.
The 3-sphere Friedmann universe is one such solution; it has
uniform positive curvature. It has positive curvature like a sphere (a
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2-sphere), and the 3-sphere universe likewise has no special points
or special directions.

Carl Friedrich Gauss defined the curvature of a two-dimensional
surface as 1/r1r2, where r1 and r2 are the principal radii of curvature.
A sphere has a Gaussian curvature of 1/r0

2, where r0 is the radius of
the sphere. Both radii of curvature have the same sign, because if
you are sitting on the top of the sphere, for example, geodesics
going left to right as well as front to back both curve downward. Two
negatives (downward bending) multiplied together give a positive, so
their product r1r2 is positive, and 1/r1r2 is positive. Thus the
curvature of a spherical surface is always positive.

But there are two additional possibilities (zero curvature or
negative curvature). First, the universe could have a geometry at a
given epoch that was of zero curvature, or flat, like an infinite flat
plane. (When we refer to such a universe as “flat,” we mean “not
curved” rather than 2-dimensional like Flatland. This is an infinite
three-dimensional universe that obeys the laws of Euclidean solid
geometry.) This universe is infinite in extent and has an infinite
number of galaxies (and no center, as discussed in chapter 14).

In the third case, the curvature is negative. The geometry at a
given epoch is negatively curved like an infinitely large Western
saddle. A Western saddle curves downward, left to right, to
accommodate your legs, but curves upward, front to back, to
accommodate the neck and back of the horse. Thus the curvature in
the two directions is opposite, and since a positive times a negative
is a negative, the curvature 1/r1r2 is negative. If you draw a circle on
a Western saddle, its circumference is larger than 2πr, as opposed to
a sphere where, as we have discussed, the circumference would be
less than 2πr. On a Western saddle, if you go out a distance r from
your location, you will go way up and way down as you trace the
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circumference, so the circumference is larger than the 2πr value you
expect from a plane.

A negatively curved surface makes for an infinite universe that
also has an infinite number of galaxies. The negatively curved case
is a hyperbolic universe depicted in figure 22.6 as a bowl-shaped
surface living in the ordinary flat spacetime of special relativity. In
the figure, time is vertical with the future toward the top. We also
show two dimensions of space, indicated by the horizontal red
arrows.

If you were to start at the center of the bottom of the bowl and
take a tape measure out to the circumference of the top of the bowl,
you would find that the length of the radius drawn along the surface
is unexpectedly short relative to the circumference. That’s because
in addition to moving out in space, your measuring tape is also
moving up in time as it hugs the surface of the bowl. The distance
measured is shortened because of that –dt2 term, which subtracts
from the value of ds2 you will get as you measure with the
measuring tape. If the radius of a circle constructed on the bowl is
short relative to its circumference, that means the circumference is
large relative to the radius—a hallmark of negative curvature. (The
Western saddle is an analogy that captures the large circumference-
to-radius ratio, but has special directions, front-back, left-right,
which the hyperbolic universe does not possess: it is the same in all
directions.) This hyperbolic surface stretches to infinity, has an
infinite volume, and contains an infinite number of galaxies.
Friedmann investigated this type of model in 1924; he found that it
started with a Big Bang and expanded forever. Later Howard
Robertson investigated the flat, or zero curvature, case and found
that it also started with a Big Bang and expanded forever.
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FIGURE 22.6. Hyperbolic negatively curved space (blue) in ordinary spacetime.
Time is vertical, with the future toward the top. We also show two spacelike
dimensions—horizontal axes. Credit: Adapted from Lars H. Rohwedder

Let’s summarize these results (table 22.1). In a positively curved
universe, the sum of angles in a triangle drawn at a particular epoch
is more than 180°, just like on a sphere. In a flat, or zero-curvature,
universe, the sum of angles in a triangle at a given epoch is equal to
180°. In a negatively curved universe, the sum of angles in a
triangle at a given epoch is less than 180°. The positively curved
Friedmann universe is finite in space and finite in time. It curves
back on itself in space to make a closed surface and closes off in
time also—with a Big Crunch at the end. The flat and negatively
curved Friedmann universes are infinite in space, containing an
infinite number of galaxies, and are infinite in time as well,
expanding forever into the future.
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TABLE 22.1. CHARACTERISTICS OF FRIEDMANN-TYPE BIG BANG MODELS

MODEL 3-SPHERE FLAT HYPERBOLIC
Curvature Positive Zero Negative
Circumference of a
circle < 2πr = 2πr > 2πr

Sum of angles in a
triangle > 180° = 180° < 180°

Number of galaxies Finite Infinite Infinite
Starts with Big Bang Big Bang Big Bang
Future Finite Infinite Infinite

Expansion history
Expands, then
collapses, ending in
Big Crunch

Expands forever Expands forever

After Penzias and Wilson’s discovery of the microwave
background radiation in 1965, the search was on to find out which of
these models best describe our universe. Current data from the
WMAP and Planck satellites favor a zero-curvature model to an
accuracy of better than 1%. But we have found that the dynamics of
the universe are more complicated than Friedmann envisioned. After
Hubble’s observations confirmed the expanding universe, which
Friedmann’s models had predicted, a few mysteries remained. Was
there really nothing before the Big Bang? What started the Big
Bang? And how did that microwave background radiation get to be
as uniform as we observe? Answering these questions would cause
us to reexamine the very early history of the universe.



523

23
INFLATION AND RECENT

DEVELOPMENTS IN
COSMOLOGY
J. RICHARD GOTT

This chapter explores the very early universe—going back as far as
the Big Bang and even before. As we have discussed, in 1948
George Gamow wondered what the universe would be like at its very
earliest moments. Gamow reasoned that the universe would be
compressed near the Big Bang and would be very hot and filled with
hot thermal radiation. This radiation cools off as the universe
expands.

We can explain this by thinking about the 3-sphere Friedmann
universe. At each epoch, it has a finite circumference, and as this 3-
sphere universe expands, its circumference increases. Imagine
photons circling this circumference, like race cars going around a
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circular race track. The circumference of the track is getting bigger
with time as the cars are continually chasing each other around the
track. Suppose 12 photons are equally spaced around the circular
track like the 12 numerals on a clock face. As the track expands, the
cars are all racing at the same speed, the speed of light. If they start
equally spaced around the track, with 1/12 of the track separating
each car from the one in front of it, they will remain equally spaced
around the track as it expands. Each car is equally good, so a car
will not be catching up with the car in front or falling behind and
running into the car behind. If the cars remain equally spaced
around the track, as the circumference of the track gets larger, the
distance separating the cars will increase. If the track doubles in
size, the distances between the cars will double. Now imagine an
electromagnetic wave circling the circumference going clockwise.
Each of the 12 photons could be placed at one of the crests of the
waves. The photons and the crests of the waves both travel at the
speed of light, so the photons stay at the wave crests as the wave
moves. Thus, as the track circumference expands, the distance
between the wave crests expands by the same factor. When the
circumference of the universe doubles, the wavelength (distance
between the crests) doubles as well.

This explains why light will be redshifted as the universe
expands: because of the stretching of space. This redshifting means
that the hot thermal radiation in the early universe will cool off
(become of longer wavelength) as the universe expands. Calculating
the nuclear reactions occurring in the first 3 minutes and matching
with the deuterium abundance we find today allowed Gamow’s
students Robert Herman and Ralph Alpher to calculate the
temperature that the radiation would have today by estimating how
much the universe would have expanded since those early times.
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They got a current temperature of 5 K. In the 1960s, as we saw in
chapter 15, Robert Dicke at Princeton thought of the same
argument, came to similar conclusions, and decided to look for the
radiation. Penzias and Wilson beat Dicke’s team to it.

When the Cosmic Background Explorer (COBE) satellite was
launched in 1989 to measure the cosmic microwave background
(CMB) in detail, it found a nearly perfect blackbody shape for its
spectrum (just as Gamow would have predicted) with a temperature
of 2.725 K. George Smoot and John Mather received the 2006 Nobel
Prize in Physics for their work on COBE.

Gamow and Alpher’s prediction of the existence of the CMB and
Alpher and Herman’s estimate of its temperature as 5 K together
constitute one of the most remarkable predictions in the history of
science to be subsequently verified. It was rather like predicting that
a flying saucer 50 feet across would land on the White House Lawn
and later having one 27 feet across actually show up! This is also an
important vindication of the Copernican Principle, the idea that our
location must not be special; with Hubble’s observations of isotropy,
the Copernican Principle leads us directly to the homogeneous,
isotropic, Friedmann Big Bang solutions of Einstein’s field equations,
which Gamow and his colleagues used to predict the microwave
background.

The resulting Friedmann Big Bang model has been incredibly
successful, but some important questions remained. This universe
has a beginning, a Big Bang, but what happened before the Big
Bang? The standard answer (which we gave in chapter 22) has been
that time, as well as space, was created in the Big Bang, so there
was no time before the Big Bang. Still people wondered, why was
the Big Bang so uniform? When we look out in different directions,
the temperature of the CMB is uniform to one part in 100,000. How
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do these different regions “know” to be at the same temperature?
When we look in one direction, we see out 13.8 billion light-years.
But we are looking back in time to an epoch when the universe was
only 380,000 years old. In the standard Big Bang model, that region
should be influenced only by stuff no more than 380,000 light-years
away from it. But if we look out 13.8 billion light-years in the
opposite direction, 180° across the sky, we see another region that
is at essentially the same temperature. In the standard Big Bang
model, these two regions on opposite sides of the sky at an epoch
380,000 years after the Big Bang (when we are seeing them) are
separated by a distance of 86 million light-years and have not had
time to communicate with each other in the scant 380,000 years
since their birth. Usually, if we see two regions at the same
temperature, it is because they have had time to communicate with
each other and reach thermal equilibrium. But in the standard Big
Bang model, widely separated parts of the CMB observable in the
sky have not had time to be in causal contact with each other. In the
Friedmann model, different regions of the universe must have
miraculously started out with a homogeneous expansion at the same
temperature everywhere. How could it be so uniform?

But COBE also detected small fluctuations of one part in 100,000
from one region of the sky to another. If the universe had been
perfectly uniform, no density enhancements would have been
present to grow into galaxies and clusters of galaxies later. Our
existence depends on the universe having small fluctuations initially,
which can eventually grow by the action of gravity into the galaxies
we observe today. The universe had to be almost perfectly uniform
but not quite. It was a mystery. I am reminded of the old Depression
Era saying: “If we had some bacon, we could have bacon and eggs
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for breakfast, if we had some eggs!” We needed to explain first the
overall uniformity and then the small fluctuations.

In 1981, Alan Guth proposed a solution to this problem. His
model proposed that the universe started with a short period of
accelerated expansion he called inflation. In a spacetime diagram,
this looks like a small trumpet bell pointing upward like a golf tee, to
hold up the Friedmann football spacetime. It starts with a finite
circumference near the mouthpiece of the trumpet but becomes
dramatically larger as we move upward in time to the bell-like
opening of the horn. The bottom tip of the Friedmann football is
replaced by a little trumpet mouth with finite circumference at the
bottom—perhaps as small as 3 × 10–27 centimeters (figure 23.1).
The trumpet epoch lasts a little longer than the Big Bang tip of the
football would alone, and this extra time allows the different regions
we see today enough time to get into causal contact. In the
beginning, the circumference is so small that the different regions,
benefiting from that little bit of extra time, come into casual contact,
and then the accelerated expansion during the trumpet epoch pulls
them far apart; it only looks as though they have had insufficient
time to be in communication.
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FIGURE 23.1. Inflationary beginning (trumpet) to start a Friedmann Big Bang
universe (football).
Photo credit: J. Richard Gott

What was Guth’s basis for this model? He thought that in the
early universe there may have been a vacuum state having a high
energy density—and therefore a high negative pressure—mimicking
the curvature of empty space implied by Einstein’s famous
cosmological constant. But Guth wanted a very high value for this
cosmological constant. We are used to thinking that empty space
should have a zero density. It has, after all, been cleared of all
particles and radiation. But the vacuum of empty space may have an
energy density due to fields like the Higgs field filling the universe.
The amount of vacuum energy present depends on the laws of
physics. Guth argued that in the early universe, the weak and strong
and electromagnetic forces would have been united in a single
superforce, and the vacuum energy at that time (when the laws of
physics were different) might have been much higher than the tiny
value seen today. Thus the cosmological constant was not really a
constant (as Einstein had supposed) but could change with time. In
the very early universe, the vacuum energy density could have been
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quite high. Accompanying this high energy density was a large
negative pressure, ensuring, by the laws of special relativity, that the
vacuum energy as seen by different observers traveling at different
velocities through space would all be the same. As we have
discussed, the vacuum energy density produces an attraction, but
the negative pressure operating in three directions produces a
gravitational repulsion three times larger. This, according to
Einstein’s equations, would have started the universe off on the
accelerated expansion Guth wanted. It was this gravitational
repulsion that produced the initial expansion we call the “Big Bang.”

In fact this trumpet-like solution to Einstein’s field equations had
already been found by Willem de Sitter in 1917. He solved Einstein’s
equations for the case of empty space with a cosmological constant
and nothing else. With no ordinary matter to balance the repulsive
effects of the cosmological constant, this solution produced a
universe whose expansion was accelerated. The whole solution is
called de Sitter space. This spacetime is a 3-sphere universe that
starts off with infinite radius in the infinite past. It is contracting at
nearly the speed of light. But the repulsive effects of the
cosmological constant begin to slow the contraction until it stops at
a minimum radius—a waist of minimum circumference—and then
begins to expand. It expands faster and faster as the repulsive
effects of the cosmological constant continue. It ends up expanding
at a rate closer and closer to the speed of light, and in the infinite
future this universe expands to infinite size. The spacetime diagram
of de Sitter spacetime looks like a corset with a narrow waist (figure
23.2). The diagram shows one dimension of space around the
horizontal circumference and the dimension of time vertically. The
future is toward the top. The skirt at the bottom shows the
contracting phase, and the waist at the middle shows the minimum
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radius of the universe. Then it fans out at the top to make a trumpet
horn.

FIGURE 23.2. A spacetime diagram of de Sitter space. As in figures 22.4 and
22.5, this figure shows one dimension of space and one of time. Credit: J. Richard
Gott

As with the Friedmann spacetime model, the only thing to pay
attention to here is the corset-shaped surface itself. Forget the inside
and outside. The surface alone is real. This corset-shaped spacetime
has horizontal circular cross-sections at individual time slices. These
show the circumference of the 3-sphere universe at particular
instants of cosmic time. These circles are large at the bottom, reach
a minimum at the waist, and then get larger again at the top,
showing the size of the 3-sphere universe as it contracts and then
expands. The vertical “corset stays” represent possible worldlines of
particles. These are straight geodesic lines that little trucks could
follow by traveling straight ahead on the corset’s surface. The corset
stays are coming together in the bottom half, reach a minimum
separation at the waist, before spreading apart in the upper half. In
the upper half, the curvature of the spacetime is causing these
particles to accelerate away from each other. As the particles fly
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apart, their clocks begin to slow down exponentially as they
approach the speed of light. Their clocks are
s_l__o___w___i____n_____g______d______o_______w________n
. During later ticks on these clocks, the circumference expands
enormously. Although the diagram shows the space to be expanding
approximately linearly at nearly the speed of light at late times (a
cone opening out at nearly 45°), as measured by the exponentially
slowing clocks carried by the particles themselves, the circumference
seems to be doubling in each successive time interval, increasing as
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1,024, . . . , resulting in an
exponentially accelerated expansion. It’s like currency inflation,
which is why Guth called the model inflation.

Look at the waist. It is a circle representing the 3-sphere
universe at its point of maximum contraction. Keep in mind that it is
really a 3-sphere. We can designate the point on the far left of this
circle as a “north pole” of this universe. Santa would live there.
Consider the red corset stay at the left: it is the worldline of Santa
sitting at the north pole of the 3-sphere universe. The corset stay at
the right, 180° away, is the black worldline of a penguin at the south
pole. Santa, whose worldline is at the north pole, will never see the
penguin living at the south pole. A light beam starting from the
penguin in the infinite past will travel straight at 45° upward and to
the left. It will pass diagonally upward across the front of the corset
like a diagonal sash, but it will never quite reach Santa’s worldline at
the left. There are event horizons in this universe. Santa never sees
anything that happens to the penguin—he never sees anything
upward and to the right of that sash. Consider a child living near
Santa, whose green worldline is shown in figure 23.2. Light beams
from that child can reach Santa. Santa will see the child at late times
accelerating away from him. Light from the child will become more
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and more redshifted. If the child sends Santa a message that says
“THINGS ARE GOING FINE,” Santa will receive “THINGS A_R__E.”
But Santa will never receive the signals “GOING FINE.” The signal
“GOING” travels along that 45° sash and never arrives. It looks to
Santa just as though the child were falling down a black hole. When
the child’s worldline crosses that 45° sash, which is Santa’s event
horizon, the child’s signals no longer arrive. The space between
Santa and the child is simply stretching so fast that the signal
“FINE,” emitted on the other side of the sash, cannot traverse the
ever-widening distance between Santa and the child. This does not
violate special relativity. The latter just says someone else’s
spaceship cannot pass you at a speed faster than the speed of light.
But general relativity still allows the space between two particles to
stretch so fast that light cannot cover the ever-widening gap
between them. De Sitter spacetime explains how particles can get
into communication and thermal equilibrium near the waist and then
be spread apart to great distances.

Guth was ultimately proposing to start the de Sitter universe at
the waist, with a small circumference that today we might estimate
to be perhaps as small as approximately 3 × 10–27 centimeters. He
was eliminating the infinite contraction phase (the lower half of the
full spacetime). He just needed a little bit of high-density vacuum
state at the beginning. The repulsive effects of the large negative
pressure would cause the spacetime to start expanding, and then to
expand faster and faster, with the size of the universe doubling every
10–38 seconds. The universe would become very large. As the
universe expanded, the energy density of the vacuum state would
stay the same. The cosmological constant would stay constant. A
small region of high energy density would expand to become a large
region having the same high energy density.
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Curiously, this would not violate local energy conservation. If I
had a box of high-density, negative-pressure fluid, as I expanded the
walls of the box, I would have to do work to pull the walls apart
against the negative pressure that was resisting expansion. The
work I was doing pulling the walls apart against this negative
pressure (or suction) would add energy to the fluid—just enough to
keep its energy density at the same high level as the volume of the
box expanded. Thus energy would be conserved locally. But in the
universe, what is pulling on the walls of my box? It is just the
negative pressure from the other little similar boxes of spacetime
next to it. As long as the pressure is uniform throughout the
universe, the expansion itself is doing the work.

In general relativistic cosmology, there is no global energy
conservation, because there is nowhere flat (approximating the
spacetime of special relativity) on which to stand and establish an
energy standard. Thus the total energy content of the universe can
go up with time if there is negative pressure. This enabled Guth to
start off his inflation model with a little piece of high-density vacuum
and then let it grow naturally into a large universe with a vacuum
state of the same density. In this way the vacuum state was “self-
reproducing,” growing exponentially large from a tiny beginning.
Because of this, Guth said the universe “is the ultimate free lunch.”
Eventually, the vacuum state would decay, as the strong and weak
and electromagnetic forces decoupled. As the energy density in the
vacuum of empty space dropped to a low value, its vacuum energy
would be dumped into the form of elementary particles. The
universe would fill with a thermal distribution of elementary
particles.

This is where the inflationary trumpet at the beginning of the
universe joins to the bottom of the football-shaped Friedmann Big



534

Bang model. The expansion of the universe then starts to
decelerate, as in the football model. The pressure is now just the
ordinary thermal pressure of particles, which is positive. Worldlines
that have said “goodbye” to each other during the accelerating
inflationary trumpet phase (like Santa and the child), will say “hello
again” after the decelerating Friedmann phase begins. Inflation
showed how the initial conditions of the Friedman Big Bang model
could be naturally produced. The repulsive gravitational effects of
the initial vacuum state (through its negative pressure) started the
Big Bang! The Big Bang did not have to start with a singularity, but
instead could start with a small, high-density vacuum region.
Inflation could explain why the universe was so large, and why it
was so uniform. Any wrinkles would be flattened out as the universe
stretched to enormous size. It could also explain the small
fluctuations of 1 part in 100,000 that we observe. These are small
random quantum fluctuations due to Heisenberg’s uncertainty
principle. The universe was doubling in size every 10–38 seconds in
the beginning; on these short timescales, the uncertainty principle
ensures random fluctuations in the energy of any field. In fact, the
spongelike pattern of galaxy clustering that we see in the universe
today—the cosmic web, as well as the pattern of hot and cold spots
in the CMB, indicate that the initial conditions appear to have been
random in precisely the way expected from the random quantum
fluctuations predicted by inflation (see my book, The Cosmic Web
[2016]).

Inflation had one problem, however, which Guth recognized. The
high-density vacuum state at the beginning would not be expected
to decay into elementary particles all at once. This high-density
inflating sea would decay into bubbles of low-density vacuum, a
phenomenon investigated by Sidney Coleman. It is like boiling water
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in a pot. The water does not turn to steam all at once. Bubbles of
steam form in the water. But this was not a uniform distribution—not
the uniform universe we were hoping for. So Guth mentioned that as
a problem. In 1982, I proposed that inflation would produce bubble
universes—each bubble would expand to make a separate universe
like ours (figure 23.3).

FIGURE 23.3. Bubble universes forming in an inflating sea—A multiverse.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)

In my theoretical model, we live inside one of the low-density
bubbles. I noticed that if, after the bubble formed, it took a while for
the vacuum energy to decay, it would decay on a hyperbolic surface,
making a uniform, negatively curved, hyperbolic Friedmann
cosmology (recall figure 22.6). From inside the bubble, we are
looking out in space and back in time, so we just see our own
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bubble universe and the uniform inflating sea before it was created.
Everything looks uniform to us—solving Guth’s nonuniformity
problem. The bubble expands at nearly the speed of light. But the
inflating sea expands so fast that the bubbles never percolate to fill
the entire space. New bubble universes are continually forming, and
the inflating sea is expanding between them to provide space for
even more new bubble universes to form. I envisioned an infinite
number of bubble universes forming in an ever-expanding inflating
sea—what we now call a multiverse. 1 These bubble universes would
have negative curvature inside and would expand forever—they
would be hyperbolic Friedmann universes. Surfaces of constant
epoch would be hyperbolas nestled inside the expanding bubble. A
surface of constant epoch is one for which alarm clocks on individual
particles all go off showing a constant time since the bubble
formation event. Its shape is hyperbolic, because particles going
faster have clocks that tick more slowly and therefore, the point at
which their alarm clocks go off is delayed (compare with figure
22.6). This produces a hyperbolic shape that is infinite in extent as it
bends upward inside the expanding bubble wall (see figure 23.3).
Eventually, as the bubble expands to infinite volume in the infinite
future, an infinite number of galaxies would be produced. Thus, an
infinite number of infinite bubble universes could be produced from
an initially very small, high-density de Sitter space.

This seems odd. How can one get an infinite number of universes
each ultimately infinite in size, from just a finite beginning? De Sitter
spacetime looks like a trumpet with its mouth opening upward. A
horizontal slice through the waist of de Sitter space at the mouth of
the trumpet is a circle. This is a small 3-sphere universe of finite
circumference and finite volume, like the one Einstein considered.
But the top of the trumpet resembles a cone, and one can slice a



537

cone in a circle, a parabola, or a hyperbola, depending on how you
slice it. If you slice de Sitter spacetime horizontally, you get a circle—
that’s a 3-sphere universe. If you slice it on a 45° slant, you get a
parabola and an infinite flat universe. If you slice it with a vertical
plane, you will get a hyperbola—that makes an infinite negatively
curved universe. It is like the old fable about the blind men and the
elephant. One man feels the trunk and says the elephant is shaped
like a snake. Another feels the leg and says that the elephant is
shaped like a tree trunk. Still another feels the side of the elephant
and says it is like a wall. In the same way, the shape of de Sitter
space depends on how you slice it. Make one hyperbolic slice inside
a bubble universe that extends to infinity, and you have a slice of
space that is infinite, marking the epoch where the inflating de Sitter
vacuum ends and dumps its energy into particles, and the
Friedmann model begins. Just like a loaf of bread, which can be cut
into different slices to make American slices or French slices, the real
thing is the loaf itself. If we look at the spacetime geometry of de
Sitter space for the inflationary model, we can see that it starts as a
finite 3-sphere universe at the waist and expands forever, becoming
infinitely large. This remarkable spacetime geometry, in which
inflation continues forever and the space becomes infinitely big,
allows creation of an infinite number of infinite bubble universes in
an ever-inflating sea.

Different bubble universes could have different laws of physics in
them, if different bubbles corresponded to tunneling and rolling
down into different valleys in the landscape, where the values of
various fields could be different. The laws of physics we see in our
universe could be only local bylaws, as emphasized by Andrei Linde
and Martin Rees.
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It is important for the de Sitter inflationary universe to begin at
the waist. We do not want the infinite contraction phase that
precedes it. Borde and Vilenkin showed why: bubbles would form in
the contracting phase too, and there the bubbles would be
expanding in a space that was contracting; the low-density bubbles
would collide with one another and fill up the space, ending the
inflating sea and preventing it from ever reaching the waist and the
expansion phase. You would just get a Big Crunch singularity; the
bubbles would not have negative pressure inside to cause a
turnaround at the waist. So, Borde and Vilenkin concluded that the
inflationary multiverse starts off as a finite piece of inflating sea at
the beginning. This could be small, as small as 3 × 10–27

centimeters. It isn’t nothing, but it is perhaps as close to nothing as
you could get.

The vacuum energy density can be viewed as the altitude in a
landscape. The altitude represents the vacuum energy density, the
energy density of empty space. Different places in the countryside
correspond to different values of the fields (such as the Higgs field)
that are creating the vacuum energy. Different locations (different
values of the fields) correspond to different altitudes (different
values of vacuum energy density). Today we have a very low
vacuum-energy density—we are near sea level. But in the early
universe the vacuum energy density would be high, like being
trapped in a high mountain valley (figure 23.4).
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FIGURE 23.4. Quantum tunneling.
Credit: Adapted from J. Richard Gott (Time Travel in Einstein’s Universe, Houghton
Mifflin, 2001)

A ball trapped in a high mountain valley is ultimately unstable: it
has a lower energy state it can go to—sea level. But it can be
trapped if it is surrounded by mountains on all sides. In Newton’s
universe, it would have no way to roll down, but the quantum
mechanical process called quantum tunneling allows it to tunnel
through a surrounding mountain and then roll down to sea level. 2

Quantum tunneling is a process discovered by George Gamow. It
explained the radioactive decay of uranium. Uranium nuclei decay by
emitting an alpha particle (a helium nucleus with two protons and
two neutrons). The alpha particle is trapped inside the nucleus by
the strong nuclear force attracting it to other protons and neutrons.
This strong force acts like the mountain range surrounding the
mountain valley, trapping the alpha particle inside the nucleus. But
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the strong nuclear force is a short-range force; if the alpha particle
could somehow get out of the nucleus, beyond the influence of the
strong-force attraction, it could escape. The alpha particle is
positively charged and would then be repelled by the positively
charged main nucleus. It would roll down the hill, away from the
nucleus, and the kinetic energy it picked up would be due to
electrostatic repulsion. From the energy an emitted alpha particle is
measured to have when uranium decays, scientists could calculate
how high up the hill it was when it began. It turned out that it was
emitted outside the uranium nucleus! How did it get out there?
Quantum mechanics tells us that just as light has both a wave and a
particle nature, so too do objects we usually refer to as “particles,”
such as alpha particles. The wave nature of an alpha particle means
that it is not well localized, in a sense captured by Heisenberg’s
uncertainty principle. Gamow found there was a small probability
that the alpha particle could “tunnel” through the mountain that was
holding it inside the uranium nucleus and find itself suddenly far
outside the nucleus, where it would roll down the hill away from the
nucleus due to electrostatic repulsion. It reminds me of the Zen
koan: How does the duck get out of the bottle (whose neck is too
narrow to allow the duck to escape)? Answer: The duck is out! So
the alpha particle quantum tunnels through the mountain and “the
alpha particle is out.” Here is another instance where Gamow might
have gotten a Nobel prize.

In the bubble universe case, the mountain valley represents the
initial inflationary universe (at the waist of de Sitter space) with its
high vacuum energy density. It would be happy to stay in that high-
density ever-expanding state forever, but after a long time, there is a
chance it will tunnel through the mountain, where it will roll down to
sea level, releasing the energy of the vacuum into kinetic energy and
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into the creation of ordinary elementary particles. This tunneling
represents the instantaneous formation of a small bubble with a
vacuum energy density slightly less than the vacuum energy density
outside. The negative pressure outside the bubble is stronger than
the negative pressure inside the bubble, and the difference pulls the
bubble wall outward. It expands faster and faster, eventually
approaching the speed of light. Meanwhile, inside the bubble, the
vacuum energy density is slowly rolling down the hill toward sea
level. Inflation continues for a while inside the bubble as it rolls
down the hill. When it has rolled to sea level and deposited its
vacuum energy in the form of particles, inflation stops, and the
Friedmann phase begins. It was this type of scenario that Andrei
Linde and also Andreas Albrecht and Paul Steinhardt independently
published shortly after my paper came out. Outside the bubble, the
vacuum state remains up in the mountain valley and an endless
inflating sea continues its rapid accelerated expansion. I had
discussed the geometry and general relativity involved in the
formation of bubble universes to make what today we call a
“multiverse,” while Linde and Albrecht and Steinhardt independently
proposed detailed particle physics scenarios that would actually
allow bubble universes to be formed. I required that inflation
continue in the bubble universe for a while to create the universe we
live in. In the Linde and Albrecht and Steinhardt models, this did
naturally occur as the vacuum energy density in the bubble took
some time to roll slowly down the hill toward sea level. Later in
1982, Stephen Hawking published a paper adopting the bubble
universe idea and showing that initial quantum fluctuations would be
expanded by inflation to appear on cosmological scales, having just
the form needed to successfully seed the formation of galaxies and
clusters of galaxies in the universe. 3 The structure that was



542

subsequently observed in both the CMB and the galaxy distribution,
which we described in chapter 15, is in beautiful accord with
predictions from inflation.

Although it is possible for a neighboring bubble universe to
collide with ours in the far future (perhaps 101800 years from now,
creating a sudden hot spot in the sky whose radiation would
probably kill any life around at the time), most of these other
universes in the multiverse are forever hidden from our view by an
event horizon. They are so far away that the light from them can
never cross the ever-inflating region between us and them. It seems
clear today that once it gets started, inflation is hard to stop. It will
continue expanding forever, creating a multiverse with an infinite
number of universes like ours. In 1983, Linde proposed chaotic
inflation, which would also produce a multiverse of low-density
pocket universes in an ever-expanding inflating sea. Linde’s chaotic
inflation model relied on quantum fluctuations to move you randomly
on the landscape. There was a chance that a quantum fluctuation
would move you up into the hills or mountains, where the vacuum
energy density was high. The higher the altitude, the higher the
energy density, and the shorter the doubling time for expansion. In
the high-altitude regions, more space of high vacuum energy density
is being created at a rapid rate by the high rate of inflation. Regions
at high altitude thus reproduce more rapidly. It’s as if people had
more children the higher altitude at which they lived. After a few
generations, almost everyone would be living in the mountains. The
whole multiverse would be inflating at a high rate. Then individual
regions could roll down into the valley, creating individual pocket
universes like ours. Most of the volume of space would be in the
rapidly expanding mountain regions, but there would be patches
(pocket universes) always forming by rolling down to sea level. So,
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we don’t really need to start in mountain valleys. In a general
landscape, we expect always to be forming low-density universes
like ours in an ever-inflating multiverse.

Even though we can’t see these other universes in the
multiverse, we have reason to think they exist, because they seem
to be an inevitable prediction of the theory of inflation, which
explains a wealth of observational data.

Inflation got a great boost when the WMAP and the Planck
satellite produced their results. The strength of the temperature
fluctuations seen at different angular scales in the CMB matches
exactly the pattern expected from inflation (recall figure 15.3). The
WMAP and Planck satellite observations also showed that the
universe has approximately zero curvature. In a positive curvature
universe, we would see fewer spots in the microwave background
map, because the circumference of a large circle is smaller than the
2πr that we expect from Euclidean geometry. If it were negatively
curved, the circumference would be larger than 2πr, there would be
more spots, and the spots would be smaller in angular size than
expected from Euclidean geometry. The observations show
temperature fluctuations that peak in strength at about 1° in angular
scale. This agrees with the prediction of a zero curvature universe.

This means that we don’t really know sign of the curvature. The
curvature of the universe is just so low that we cannot measure it.
Our current data show that the visible universe is flat to an accuracy
of somewhat better than 1%. In the same way, a basketball court
looks flat even though we know it follows the curvature of Earth. It’s
just that the radius of Earth is very much larger than the basketball
court, ensuring that the curvature in the basketball court is not
noticeable. We know that early people thought Earth was flat,
because the tiny part of Earth they could see was approximately flat.
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All we really know is that the radius of curvature of the universe is
much larger than the 13.8-billion-light-year radius out to which we
can see—out to the CMB. Guth emphasized that no matter what
shape the universe was initially (whether positively or negatively
curved), inflation in the simplest models would usually yield enough
expansion to make the universe much larger than the part we can
inspect. Guth predicted that we would find an approximately flat
universe, and he was right. If our universe is a bubble universe, it
simply means that it continued to inflate for a long time inside the
bubble, as the vacuum state was rolling down the hill after
tunneling. A “long” period of inflation, say 1,000 doublings in size as
seen from inside the bubble, could be accomplished in just 10–35

seconds, if the doubling time was 10–38 seconds. That would make
the current radius of curvature of the universe 10274 times larger
than the part we can see, so it would look flat.

Cosmological models today are defined by two parameters: Ωm

and ΩΛ. The values of these parameters determine the expansion
history of the universe, and whether it is finite (like a 3-sphere) or
infinite in extent. The first parameter describes matter density and is
given by Ωm = 8πGρm/3H0

2, where G is Newton’s gravitational
constant, ρm is the average density of matter in the universe today
(including both ordinary matter and dark matter), and H0 is the
Hubble constant today, quantifying how fast the universe is
expanding. The numerator (8πGρm) describes the density in the
universe (the amount of gravitational attraction), while the
denominator of the fraction (3H0

2) describes the kinetic energy in
the expansion. In simple Friedmann models where matter only is
involved, Ωm tells us whether the universe will expand forever or
not: if Ωm > 1, the gravitational attraction overcomes the kinetic
energy of expansion and the universe ultimately collapses: this is the
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3-sphere Friedmann football-shaped spacetime illustrated in figure
22.5. If Ωm < 1, the kinetic energy of expansion overcomes the
gravitational attraction, and we get the negatively curved Friedmann
universe that expands forever. If Ωm = 1, the kinetic energy balances
the gravitational attraction and the model is flat; it expands slower
and slower forever as the density goes down and the kinetic energy
of expansion lessens with time. These Friedmann models all have ΩΛ

= 0, where there is no vacuum energy density in empty space—they
lie along the bottom edge of figure 23.5.

If there is vacuum energy present today, we must also consider
the value of the second parameter, which characterizes the vacuum
energy density and is given by ΩΛ = 8πGρvac/3H0

2, where ρvac is the
vacuum energy density (the energy density of dark energy) in the
universe today. We use the subscript Λ to remind us that dark
energy behaves like Einstein’s cosmological constant term Λ. We can
display all possible cosmological models on a plane. The horizontal
coordinate indicates the value of Ωm (matter density), while the
vertical coordinate represents ΩΛ (vacuum energy−dark energy). A
particular cosmological model is represented by a point in the plane
in figure 23.5 with horizontal and vertical coordinates (Ωm, ΩΛ),
representing a particular combination of values of matter density and
dark energy density today.

If ΩΛ is not zero we get models that fill the diagram. The red
diagonal line shows the set of models with Ω0 = Ωm + ΩΛ = 1,
indicating they are flat, as inflation predicts. Models to the left of
that red line are saddle shaped and infinite in extent, models to the
right of the red line are 3-sphere universes. The black dotted
necktie-shaped region shows the models consistent with data on the
CMB from the Boomerang high-altitude-balloon telescope project in
Antarctica, a key early experiment. It runs directly along the red line,
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showing that the CMB data favor the flat model. We can get another
constraint on the cosmological model by directly measuring the
expansion history of the universe from observations of the
relationship between redshift and distance to distant objects.
Scientists use so-called Type Ia supernovae, which are good
standard candles; the area in the (Ωm, ΩΛ) plane allowed by the
supernovae Ia observations is shown in light green. These data show
the expansion of the universe is accelerated, and for this discovery,
Saul Perlmutter, Brian Schmidt, and Adam Riess shared the 2011
Nobel Prize in Physics. Models with ΩΛ > Ωm/2 have an expansion
that is accelerating today, the gravitational repulsion of the dark
energy being greater than the gravitational attraction of the matter.
The green area from the supernova data satisfies this inequality and
indicates acceleration today. (Models with ΩΛ < Ωm/2 would have
been decelerating today.) The black necktie region intersects the
green region in a small overlap region around Ωm ≈ 0.30 and ΩΛ ≈
0.70. These values are consistent with both the CMB data and the
supernova data.
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FIGURE 23.5. Cosmological models (Ωm, ΩΛ). Each point in this diagram
represents a particular cosmological model with a particular value of matter
density (corresponding to its horizontal coordinate Ωm), and dark energy density
(corresponding to its vertical coordinate ΩΛ). The green dotted area covers models
allowed by Supernova Ia observations (SN1a) showing the expansion of the
universe is accelerating. The black dotted area covers models allowed by the
cosmic microwave background (CMB) from the Boomerang Balloon Project in the
year 2000, one of the first papers showing CMB plus supernovae observations
imply a flat universe (Ω0 = Ωm + ΩΛ = 1), with Ωm ≈ 0.3 and ΩΛ ≈ 0.7. Dark
energy is 70% of the stuff of the universe. Subsequent observations from the
WMAP and Planck satellites have greatly strengthened this conclusion.
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Credit: Reprinted by permission from MacMillan Publishers Ltd: Nature, 404, P. de
Bernardis, et al. April 27, 2000

Interestingly, this overlap region agrees with the value of Ωm ≈
0.30 from dynamical arguments based on the masses of clusters of
galaxies, individual motions of galaxies, and the growth of structure
in the universe. This includes both ordinary matter (baryons—
protons and neutrons) and dark matter. Knowing the Hubble
constant is approximately 67 (km/sec)/Mpc, it turns out that we can
determine Ωm and Ωbaryon directly by measuring the relative heights
of the even and odd peaks in figure 15.3. The answer is Ωbaryon ≈
0.05 and Ωm ≈ 0.30. This result from the CMB agrees with the
answer Ωbaryon ≈ 0.05 from Gamow-type nucleosynthesis arguments
discussed in chapter 15 and tells us that most of the matter in the
universe is in the form of dark matter (Ωdarkmatter ≈ 0.25), which
cannot be made of ordinary matter (baryons). The search is on to
discover the detailed nature of the dark matter, as Michael has
described.

The blue lines in figure 23.5 show the age of the universe in
terms of 1/H0. The favored cosmological model is near the line
marked “age = 1/H0.”

Since the Boomerang results in 2000, the WMAP satellite has
measured the CMB with high precision and refined these estimates
to produce a standard cosmological model that explains all the
observational constraints. The Planck satellite has further refined
these estimates: H0 = 67 (km/sec)/Mpc; age of the universe = 13.8
billion years; and a value of Ωm + ΩΛ = 1 within the observational
errors, to an accuracy of better than 1%, consistent therefore with a
flat model.

WMAP’s results, when combined with supernova and other data,
were even able to track the expansion history of the universe, and
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through application of Einstein’s equations establish the ratio of the
pressure to the energy density in the dark energy, a key measure
that is simply called w. The value WMAP found for w = –1.073 ±
0.09, which is equal to the value of –1 predicted by Einstein’s
cosmological constant model to within the observational errors. The
Planck satellite produced a similar estimate. Recently, the Sloan
Digital Sky Survey has measured the current value of w to be w0 = –
0.95 ± 0.07, using data on galaxy clustering and a fitting formula
developed by Zack Slepian and myself. Using the same data and
formula, but adding data from the magnitude of gravitational lensing
of background by foreground galaxies, the Planck satellite team has
found w0 = –1.008 ± 0.068. All these estimates are consistent,
within the observational errors, with the value of w = –1 expected
from vacuum energy (dark energy). We know the energy density of
dark energy is positive, because positive energy density, above and
beyond that of ordinary matter and dark matter, is required to make
the universe flat (which we observe). We know that the pressure of
dark energy is negative, because, given that the energy density of
dark energy must be positive, only a negative pressure for the dark
energy could produce the gravitational repulsion required to cause
the accelerating expansion of the universe that we observe. We can
even accurately measure the amount of this negative pressure and
find that it is equal to –1 times the energy density of the dark
energy to within the observational errors. Einstein would be happy!
His cosmological constant term was not a blunder after all!

Sometimes people say that dark energy is a mysterious force that
is causing the current acceleration of the expansion of the universe,
or that we know nothing about dark energy. That’s not really true.
The force that is causing the accelerated expansion of the universe
is just gravity. And it’s repulsive because of the negative pressure
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associated with dark energy. We strongly suspect that dark energy
appears on the right side of Einstein’s equations with the stuff of the
universe, rather than appearing on the left side of the equations as
part of the law of gravity, because we suspect that a different
(higher) amount of dark energy was present in the early universe,
producing inflation. We suspect that dark energy is a form of
vacuum energy produced by a field or fields, but we don’t know
which one or ones. We know that the amount of dark energy is
approximately constant with time, but we don’t know whether it is
slowly falling (rolling down the hill) or rising (rolling up the hill). This
is the focus of current research.

The Sloan Digital Sky Survey was able to make an accurate
estimate of the Hubble constant, using a characteristic scale found in
galaxy clustering corresponding to the oscillations seen in the
fluctuations in the CMB in figure 15.3. In this way, they could replace
the Cepheid variable ruler for establishing the overall scale, while
using supernova data to chart the detailed changes in the Hubble
constant with time. They found a value of H0 = 67.3 ± 1.1
(km/sec)/Mpc. This means that the density of dark energy is about
6.9 × 10–30 grams per cubic centimeter. If we were to draw a sphere
centered on us with a radius equal to that of the Moon’s orbit, the
mass equivalent of the amount of dark energy contained within this
sphere would be 1.6 kilograms—inconsequential relative to the mass
of Earth−which is so small that we don’t notice its slight gravitational
effect or the slight gravitationally repulsive effect of its negative
pressure on the orbit of the Moon. But its effects on cosmological
scales, where the average density of matter is only 3 × 10–30 grams
per cubic centimeter, is profound.

Establishing this cosmological model with small errors is quite an
accomplishment. The WMAP and Planck satellites have produced
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detailed measurements of the power of fluctuations as a function of
angular scale in the CMB, which agree in extraordinary detail with
the results predicted from inflation (as shown in figure 15.3). This is
a dramatic experimental vindication of inflation. And the dark energy
we see today is of exactly the form required for inflation in the early
universe, but just of very low density.

A new independent test for inflation has recently been proposed.
If inflation causes the universe to double in size approximately once
every 10–38 seconds, early on one could only see out to a distance of
10–38 light-seconds or 3 × 10–28 centimeters. This distance is tiny,
and due to Heisenberg’s uncertainty principle of quantum
mechanics, this causes fluctuations in the geometry of spacetime
(ripples), which according to Einstein’s equations propagate at the
speed of light—namely, gravitational waves. These would leave a
characteristic swirling pattern in the polarization of the microwave
background radiation which can be measured in principle. So far, its
detection has proved elusive. The current best upper limits from the
Planck satellite, plus ground-based experiments called Keck and
BICEP2, lie somewhat below those of the simplest Linde chaotic
inflation model. The amplitude of the gravitational waves produced
depends on the detailed shape of the hill you are rolling down (see
figure 23.4). The inflationary model the Planck team thinks fits the
data best is one by Alexei Starobinsky; its doubling time is 3 × 10–38

seconds at the end of the inflationary epoch, compared with the 5 ×
10–39 seconds doubling time in the simplest Linde model. This six-
times-less-violent expansion would produce gravitational waves of
six times lower amplitude, safely below the current upper limits. A
number of observational efforts, including high-altitude balloons and
ground experiments in Antarctica, are underway to lower the
observational errors and further test inflationary models.
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Astronomers are anxiously waiting to see whether these
observations can open a new window on the early universe.

With respect to the current universe, among the early
astronomers working on cosmology in the twentieth century, the one
who came closest to the truth was Georges Lemaître. In 1931, he
proposed a model in which the universe started with a Big Bang and
expanded like a Friedmann model, until it entered a coasting phase,
during which the cosmological constant almost exactly balanced the
matter density, approximating an Einstein static model for a while,
after which time it expanded further, and the cosmological constant
began to dominate as the matter thinned out. The spacetime
diagram of this model looks like the lower half of a football at the
bottom (Friedmann phase), then a cylinder (the Einstein static
phase), and finally, the flared opening of a trumpet (de Sitter-space
phase). Except for the coasting phase in the middle, Lemaître got it
right. Lemaître was the first to calculate an expansion rate for the
universe by combining Hubble’s distances to galaxies with Slipher’s
redshifts. He was also the first to suggest that Einstein’s
cosmological constant could be viewed as a vacuum state having
positive energy density and negative pressure. Pretty good for one
career!

Inflation has been very successful at explaining the structure of
the universe that we see. We don’t really know how inflation got
started, because inflation “forgets” its initial conditions as the
universe exponentially expands, thinning out any initial components.
But there are some speculations as to how inflation may have
started.

Inflation can start with just a tiny de Sitter 3-sphere “waist”
universe with a circumference of perhaps only 3 × 10–27 cm, which
will then start expanding. But where did that come from? Alex
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Vilenkin thought it might originate via quantum tunneling, a process
analogous to that occurring with the formation of bubble universes.
This time, the ball at rest in the mountain valley would correspond to
a 3-sphere universe of zero size. It would then tunnel through the
mountain to find itself suddenly outside on the slope. This would
correspond to a finite-sized 3-sphere universe—the de Sitter waist.
Then as it rolled down the hill, that phase would correspond to the
de Sitter funnel. What would the spacetime diagram of this universe
look like?

Vilenkin showed it would look rather like a badminton shuttlecock
(figure 23.6). The point at the bottom is the pointlike zero-sized
universe at the beginning. The feathered, funnel-shaped top of the
shuttlecock is the de Sitter expansion at the end. Connecting the
point at the bottom to the flaring funnel at the top is a black
hemispherical ball shape. This represents the geometry during the
tunneling through the mountain. Being “underground” in the tunnel
causes the minus sign in front of the time dimension to flip sign:
time becomes just another spacelike dimension. The hemisphere is
half of a 4-sphere with four dimensions of space and no dimension
of time. No clocks tick in this region: the tunneling occurs in a single
instant. The ball is in the mountain valley and then suddenly it’s out.
James Hartle and Stephen Hawking considered a model like this and
added the idea that in this hemispherical bottom, the point at the
beginning—the south pole—was no different from other points on
the surface. It was exactly like the South Pole on Earth, which is
likewise no different from other points on Earth’s surface. This
universe has no boundary at the bottom—what Hawking calls the no
boundary condition. Hawking has spoken of this early region as
having imaginary time. The imaginary number i is the square root of
–1. Normally, ds2 = –dt2 + dx2 + dy2 +dz2, so if we had imaginary
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time, it, because i2 = –1, the quantity –d(it)2 would become +dt2,
and we would have ds2 = dt2 + dx2 + dy2 +dz2. Imaginary time
sounds spooky, but it just makes time into another ordinary
dimension of space. We would have four dimensions of space in this
region instead of three dimensions of space and one dimension of
time.

FIGURE 23.6. The spacetime diagram of a universe that has tunneled from
nothing.
Credit: J. Richard Gott (Time Travel in Einstein’s Universe, Houghton Mifflin, 2001).

Quantum tunneling is certainly weird. We are looking for
something weird to happen at the beginning of the universe,
because what happened then was truly remarkable. Maybe it could
have been quantum tunneling. But you don’t really start with
nothing. You start with a quantum state corresponding to a universe
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of size zero that knows all about the laws of physics and quantum
mechanics. How does nothing know about the laws of physics? The
laws of physics are simply the rules by which stuff behaves; if you
have no stuff, what do the laws of physics mean? This is one of the
problems with trying to make a universe out of nothing.

Meanwhile, Andrei Linde had noted that an inflating universe can
give birth to another inflating universe via a quantum fluctuation. A
de Sitter inflating trumpet horn could give birth to another inflating
trumpet horn, which would sprout and grow off it, like a branch
grows off a tree. In fact, this branch will inflate and grow to be as
large as the trunk and sprout branches of its own. Branches will
continue forming branches, making an infinite fractal tree of
universes, all from one original trunk. Each individual branch is a
funnel that could form bubble universes (as in figure 23.3). We
would be living in a bubble universe in one of the branches, but still,
you might ask yourself: where did the trunk come from?

Li-Xin Li and I tried to answer this question. We proposed that
one of the branches curled back in time and grew up to be the
trunk. Our model is illustrated in figure 23.7. Along the top, we see
four funnel-shaped de Sitter inflating universes labeled 1, 2, 3, and
4, from left to right. Universe 2 gives birth to Universe 1. Universe 2
gives birth to Universe 3. Universe 3 gives birth to Universe 4.
Universe 4 is the granddaughter universe of Universe 2. These
branches will continue to expand and give birth to additional
branches ad infinitum. These funnels do not hit one another—
imagine them missing each other in some higher dimensional space.
In this spacetime diagram, as in previous diagrams, only the surface
itself is real.
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FIGURE 23.7. Gott–Li self-creating multiverse. The loop at the bottom represents
a time machine; the universe gives birth to itself. Photo credit: J. Richard Gott,
Robert J. Vanderbei (Sizing Up the Universe, National Geographic, 2011).

Now we come to the most surprising feature of the model:
Universe 2 also gives birth to another branch that curls back in time
and grows up to become the trunk. It creates a little time loop in the
beginning that looks like the loop in the number “6.” Universe 2 is its
own mother! As we have discussed, general relativity allows for
loops in spacetime. There are no curvature singularities in this
model. We were able to find a quantum vacuum state for this
universe that was self-consistent and stable. The time loop has a
Cauchy horizon marking the boundary where the time travel ends. It
cuts at 45° across the trunk just above where the branch leaves the
tree. You can continue to circle the loop in the “6” at the bottom as
many times as you want, but when you move out beyond the branch
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into the top of the “6,” there is no going back. If you are before the
Cauchy horizon, you can go back out the branch and back in time for
another loop to visit yourself in the past, but once you cross the
Cauchy horizon, you are beyond the branching point, and you just
keep going on upward into one of the funnels at the top. This
universe has a little time machine at the beginning that shuts down.
Curiously, exiting such a time machine is stable, which actually
makes building one at the beginning of the universe easier.

That’s interesting, because locating the time machine at the
beginning of the universe puts it just where you want it to explain
the first-cause problem. Every event in this universe has events that
precede it. If you are anywhere in the time loop, there are always
events counterclockwise from you that are before you and give rise
to you in the usual causal way. This multiverse is finite to the past
but has no earliest event. This can occur in a curved spacetime of
general relativity.

This theoretical model would also seem to fit in well with
superstring theory. Superstring theory or M-theory posits an eleven-
dimensional spacetime consisting of one macroscopic dimension of
time, three macroscopic dimensions of space, and seven additional
spatial dimensions, which are curled up and microscopic, as Kaluza
and Klein would have liked. The complex microscopic shape
determines the laws of physics. Interestingly, inflation suggests that
the three macroscopic spatial dimensions we see today were
originally roughly as small as the microscopic Kaluza–Klein
dimensions: a de Sitter waist of perhaps 3 × 10–27 cm. This
microscopic de Sitter circumference has inflated greatly as the
universe has expanded. Originally, there were ten curled-up,
microscopic spatial dimensions; seven have remained curled-up and
tiny, while three have simply ballooned up in size since the
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beginning. Our (Gott–Li) model proposes that originally time was
also curled up in a microscopic time loop. The time loop may have
had a circumference in time (clockwise around the loop) as short as
anywhere from 5 × 10–44 to 10–37 seconds if it had the self-
consistent quantum vacuum state we have proposed. In the time
loop, all ten dimensions of space as well as the dimension of time
are curled up and tiny.

One of the wonderful things about inflation is that a small piece
of inflating vacuum state expands to create a large volume, each
little piece of which looks exactly like the piece you started with. If
one of those little pieces is the piece you started with, then you have
a time loop. Therefore, in our theory, the universe isn’t created from
nothing but rather it is created from something, from a little piece of
itself. Then the universe can be its own mother. Time travel is
something unusual that appears to be allowed by general relativity;
perhaps it is just what we need to explain how the universe got
started.

Today, I would say the theory of inflation is in very good shape.
It explains the fluctuations we see in the CMB in detail (recall figure
15.3). If you doubt that inflation occurred, remember that we see a
low-grade inflation going on today. The universe’s expansion is
accelerating, caused most likely by a low-density vacuum state (dark
energy) with a density of 6.9 × 10–30 grams per cubic centimeter.
Inflation just relies on a large amount of dark energy in the early
universe. Inflation seems inevitably to produce a multiverse of
universes. Just how sure are scientists of this? Once Sir Martin Rees
(the Astronomer Royal) was asked at a conference how sure he was
that we lived in a multiverse. He said he wouldn’t be willing to bet
his life on it, but he would go so far as to bet the life of his dog.
Linde rose to say that since he had spent decades of his life working
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on the multiverse idea, he had proven that he would bet his life on
it. Nobel Laureate Steven Weinberg said he would be willing to bet
Linde’s life on it, and Martin Rees’s dog’s!

How did inflation begin? We don’t know. Did it emerge by
quantum tunneling from nothing (perhaps the most popular model),
or even stranger, was there a little time loop at the beginning? Pedro
González-Díaz has speculated that when we have a true theory of
quantum gravity, those two models might even turn out to be the
same. Another speculation by Paul Steinhardt and Neil Turok is that
the Big Bang occurred when two universes floating in an eleven-
dimensional spacetime collided, heating them up suddenly. Repeated
bangs could occur. (This would be rather like two pieces of paper—
representing flatland universes—slapping together repeatedly in
three-dimensional space. Such things could happen in principle in M-
theory.) Lee Smolin thinks our universe could have been born inside
a black hole in a previous universe. As a star collapsed to form a
black hole, its interior density grew and grew until a high-density
vacuum state was created, whose gravitationally repulsive nature
caused it to bounce at a de Sitter waist and produce an expanding
inflationary state that could spawn a multiverse, as pointed out by
Claude Barrabès and Valeri Frolov. All this would occur inside the
black hole that formed, the smile singularity in the Kruskal diagram
being replaced by the start of a de Sitter expanding phase.

These are some of the speculative ideas that physicists are
exploring to answer the ultimate question: how did the universe
begin? Of these alternatives, probably the tunneling from nothing
model is the most popular at the moment, but we simply don’t know
which is correct. We may learn the answer when we find a “theory
of everything,” which will unite general relativity and quantum
mechanics and the strong, weak, and electromagnetic forces to
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explain all the laws of physics. When we have the equations of the
“theory of everything,” we will see what cosmological solutions they
produce. This is why we are studying fundamental physics. We are
looking for clues about how the universe works, and maybe even
how it began.



561

24
OUR FUTURE IN THE

UNIVERSE
J. RICHARD GOTT

This chapter is about the future of the universe. I am going to put
salient events in the universe’s history, both past and future, on a
timeline. This will involve some enormous times in the far future,
and also some very short times in the early universe. What is the
earliest time we can speak of in the early universe?

To answer that, we need to answer two related questions: What
is the shortest time we can measure? What is the fastest possible
clock I can imagine? Every clock, even a quartz watch, has to have
something moving back and forth, like the pendulum in a
grandfather clock. If I want the fastest possible clock, I just need the
fastest thing to move back and forth. What should I use? Light! It’s
the fastest thing I can send back and forth. In fact, all I need is that
light clock in figure 17.1 with two mirrors and a light beam bouncing
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back and forth between them. If I want to have it tick faster, what
do I do? Bring the two mirrors closer together. The closer together
the two mirrors are, the faster the clock will tick. I am going to have
one photon in my clock bouncing up and down.

What happens when I make my clock very small? I have a
problem. At least one wavelength λ of my photon must fit inside my
clock. If the distance between the mirrors in my clock is L, the
smallest my clock can be is L = λ. The wavelength and the
frequency of the photon are related by λ = c/ν. The smaller the
wavelength is, the higher the frequency will be. As I decrease the
size of my clock L, I must reduce the wavelength of the photon so it
can fit inside, and so I must increase my photon’s frequency.
Increasing its frequency means increasing its energy, because the
photon has an energy E = hν. And we must not forget Einstein’s
equation E = mc2. The energy of the photon corresponds to a
certain amount of mass. So, as I make my clock smaller, the energy
of the photon goes up, and the mass of the clock increases.
Eventually the mass of the clock becomes so large and is
compressed into such a small size L, that it falls within its own
Schwarzschild radius and forms a black hole! If I try to make a clock
that ticks too fast, it will collapse in this way and form a black hole
when the length of the clock is about L = 1.6 × 10–33 centimeters
and when it ticks once every 5.4 × 10–44 seconds. This time is called
the Planck time. It is the shortest time one can measure. The length
L = 1.6 × 10–33 cm is one you have heard of before. I have said that
the size of the singularity at the center of the Schwarzschild black
hole is not exactly zero—it is actually about 1.6 × 10–33 centimeters
across, being blurred by quantum effects. This length is called the
Planck length, and it is the shortest length one can measure. When I
explained that the circumferences of those extra spatial dimensions
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predicted by string theory might be of order 10–33 cm, this is also
the Planck length.

You can’t measure a time shorter than the Planck time. The
length of that little time loop that Li-Xin Li and I were talking about
in the beginning of the universe might be as short as this (see
chapter 23). In fact, if you look at ordinary spacetime on scales of
1.6 × 10–33 cm and times of order 5 × 10–44 seconds, the geometry
of spacetime should become uncertain, according to the uncertainty
principle. Spacetime should become spongelike and multiply
connected when seen at this scale. We can calculate the value of the
Planck length, LPlanck = (Gh/2πc3)1/2 = 1.6 × 10–33 centimeters,
using the fundamental constants. Here we see all our old friends:
Newton’s gravitation constant G, used to calculate the Schwarzschild
radius of a black hole; Planck’s constant h, used in calculating the
energy of a photon E = hν; and c, the speed of light, used to
calculate the mass equivalent of the energy of the photon (E = mc2).
The Planck time TPlanck = LPlanck/c is equal to the amount of time it
takes a light beam to cross the Planck length. Ignoring factors of
order 2 and π, this is the minimum size of the fastest clock before it
collapses into a black hole. The mass of this little, fastest clock is the
Planck mass, or 2.2 × 10–5 grams, and the density of this little clock
is the Planck density, or 5 × 1093 grams per cubic centimeter. This is
the sort of density you might get up to in the singularity in a black
hole, before quantum mechanics begins to smear things out. The
Planck scales are where quantum mechanics comes into play in
general relativity, and as mentioned before, we do not yet have a
unified model for quantum gravity. Thus the Planck scale (in length
or time) represents a limit beyond which we cannot go with our
current understanding.
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The Planck time, 5 × 10–44 seconds, is the shortest time one can
measure, and it is the earliest time we can speak of in the universe.
As I have discussed, our universe may be just one bubble (or patch)
in one inflating funnel, making up one branch in an infinite fractal
tree of universes, making up a multiverse, which may be arbitrarily
old. But I am counting time after our little bubble universe has
formed. Table 24.1 shows what is happening at each epoch.

As inflation ends, at about 10–35 seconds, the vacuum state that
filled the early universe with high-density dark energy decays into
thermal radiation. This thermal radiation is very hot and includes not
only photons (carriers of the electromagnetic force), but quarks,
antiquarks, electrons, positrons, muons, antimuons, taus (a heavier
counterpart to the muon), antitaus, neutrinos, antineutrinos, gluons
(carriers of the strong nuclear force), X-bosons (hypothetical
particles, predicted in some theories, whose asymmetric decays
produce the excess of matter over antimatter in the universe seen
today), W and Z particles (carriers of the weak force), Higgs bosons
(the particle associated with the Higgs field that gives particles their
mass), and gravitons (carrier of the gravitational field, just as the
photon is the carrier of the electromagnetic field). And if the theory
of supersymmetry is correct, there would be supersymmetric
partners for each of these particles listed above.

A word about gravitons: Einstein found that gravitational waves,
ripples in the geometry of spacetime that travel through empty
space at the speed of light, were a solution of his field equations of
general relativity. In a similar fashion, Maxwell had previously found
that electromagnetic waves traveling at the speed of light through
empty space were a solution of his field equations of
electromagnetism. We have indirect evidence for gravitational waves
(which would consist of gravitons) from Taylor and Hulse’s binary



565

pulsar, which is inspiraling toward a tighter and tighter orbit exactly
as Einstein predicted would occur from the emission of gravitational
waves as the neutron stars orbited. On September 14, 2015, the
LIGO experiment made the first direct detection of gravitational
waves. A laser interferometer measured with extreme accuracy
(1/1,000 of the diameter of a proton) the distance between pairs of
mirrors and noted the tiny oscillations in the distances between the
mirrors as the gravitational wave rippled by. How fitting that
gravitational waves, predicted by Einstein, would eventually be
detected using lasers, since Einstein discovered the principle of the
laser as well. The source of these gravitational waves was a 29-
solar-mass black hole and a 36-solar-mass black hole in a tight
binary orbit that inspiraled toward each other and merged to form a
single black hole of 62 solar masses. So, gravitational waves exist,
and the results are consistent with gravitons traveling at the speed
of light. Because gravity is such a weak force, we have not detected
any individual gravitons yet, but we expect they must exist because
we have detected gravitational waves, and we expect a wave-
particle duality for these, just as we do for electromagnetic waves
and photons.
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TABLE 24.1. EPOCHS IN THE UNIVERSE

TIME SINCE THE
BEGINNING WHAT’S HAPPENING

5 × 10–44 seconds Planck time

10–35 seconds
Inflation ends; random quantum fluctuations seeding
galaxy formation already established; matter is made;
quark soup

10–6 seconds Quarks condense into protons and neutrons
3 minutes Helium synthesis; light elements are made

380,000 years Recombination; electrons combine with protons to form
hydrogen atoms; cosmic microwave background

1 billion years Galaxy formation
10 billion years Life forms on Earth
13.8 billion years We are here

22 billion years Sun finishes main-sequence lifetime and becomes white
dwarf

850 billion years Universe cools to Gibbons and Hawking temperature
1014 years Stars fade; last red dwarfs die

1017 years
Planets detach; stellar encounters strip planets away from
their home stars, destroying white dwarf or neutron star
solar systems

1021 years
Galactic-mass black holes form; most stars and planets
ejected

1064 years
Protons should have decayed by now; black holes,
electrons and positrons, photons, neutrinos, and gravitons
are left

10100 years Galactic-mass black holes evaporate

We call this epoch, when all these elementary particles are
buzzing around, quark soup. Quarks are traveling freely and are not
confined in tight triples. Because of the uncertainty principle, in
some regions the quantum vacuum state decays slightly later and in
other regions it decays slightly earlier, causing random density
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fluctuations in the thermal radiation that is created when the
quantum vacuum state decays.

These density fluctuations are present at 10–35 seconds, when
inflation ends. They form the seeds, which will, by the action of
gravity over the course of 13.8 billion years, ultimately lead to the
formation of the galaxies and great clusters of galaxies we see
today. The spongelike pattern of galaxies we see (figure 15.4), in
which great clusters of galaxies are connected by filaments (or
chains) of galaxies, is called the cosmic web, and represents the
(greatly expanded) fossilized remnants of these early quantum
fluctuations made when the universe was just 10–35 seconds old. 1

As the universe expands, this hot soup cools and massive
particles decay into lighter ones. Initially the universe contains equal
amounts of matter and antimatter, but it is thought that asymmetric
decays of heavy X-bosons, favoring matter over antimatter, will lead
to slightly more matter than antimatter in the decay products. As
matter and antimatter particles collide and annihilate in equal
numbers to create photons, the remainder becomes dominated by
matter. The galaxies we see today are made out of matter.
Antimatter particles in the universe today are rare, and always in
danger of meeting up with one of the many matter particles and
annihilating. Antimatter particles are greatly outnumbered by matter
particles today.

At 10–6 seconds, the radiation has become so cool that the
quarks bind with other quarks to form protons and neutrons. Quarks
come in six different flavors: up, down, strange, charm, top, and
bottom. The lightest quarks are the up and down quarks. A proton is
formed by two up quarks and one down quark; they are held
together by interchanging three gluons between them. A neutron is
formed by two down quarks and one up quark, also held together by
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three gluons. (A way to remember this is that the proton has more
up quarks, and up has a “p” in it for proton, while the neutron has
more down quarks, and down has an “n” in it for neutron.) The up
quark has an electric charge of +2/3, while the down quark has an
electric charge of –1/3. Thus the proton ends up with an electric
charge of +1 while the neutron is neutral with a charge of 0.

At 3 minutes, helium synthesis occurs, as discussed in chapter
15. The universe has cooled to the point where protons and
neutrons can fuse to make light elements. The most common
element is hydrogen (a proton), but in addition, an appreciable
amount of helium is made, as well as small amounts of deuterium,
and lithium. This is the epoch Gamow and his students were using to
predict the existence of the CMB.

At 380,000 years, the universe has cooled to about 3,000 K. At
this point, electrons can bind to protons to produce hydrogen atoms.
This process, as we have discussed, is called recombination. The
universe goes from being an electrically charged plasma of mostly
electrically charged protons (+) and electrons (–) to being an
electrically neutral gas of mostly hydrogen, where each proton has
captured an electron to produce an electrically neutral hydrogen
atom. Before this epoch, photons were constantly being deflected by
either an electrically charged proton or electron—making them
execute a random or “drunken” walk. Photons didn’t get very far,
being deflected all the time. After the epoch of recombination,
photons can travel unimpeded in straight lines over long distances.
Because of this change to freely moving photons, we can see
directly back to this epoch, when we observe the CMB radiation.

At 1 billion years, galaxies typically begin to form. The high-
redshift quasars discussed in chapter 16 come from early-forming
galaxies that are seen at a time a little before this.
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The universe today is 13.8 billion years old.
By 22 billion years, the Sun will have finished its main-sequence

lifetime and will have become a white dwarf. The Andromeda galaxy
will have crashed into the Milky Way.

At about 850 billion years, the universe will cool to a constant
temperature, due to a process described by Gibbons and Hawking.
As discussed in chapter 23, observations indicate that the universe is
filled with dark energy characterized by a pressure equal in
magnitude to its energy density but negative (dynamically equivalent
to Einstein’s cosmological constant). As the matter of the universe
thins out due to the expansion, while the dark energy remains at the
same density, the universe becomes ever more dominated by dark
energy in the far future. Thus the geometry of the universe in the
future should resemble that of de Sitter space, a spacetime funnel. It
should be ever expanding. Two galaxies that can communicate today
will flee from each other faster and faster. Eventually the space
between the two galaxies will expand so fast that light cannot cross
the ever-increasing distance between them. Event horizons form. A
distant galaxy will look to us just like it is falling into a black hole. It
will get redder and redder. If extraterrestrials in the distant galaxy
were sending a signal saying “THINGS ARE GOING OK,” it would
seem to us that they are saying “THINGS A. . . .  . . .  . . . R . . .  . . .
 . . .  . . .  . . . E.” We would never receive the end of the signal,
“GOING OK.” Events occurring at late times in the distant galaxy
would be beyond our event horizon, and we would never see them
(recall figure 23.2).

Hawking showed that event horizons create Hawking radiation.
Gibbons and Hawking calculated that in de Sitter space at late times,
any observers present would see the resulting thermal radiation,
appropriately termed Gibbons and Hawking radiation. This thermal
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radiation, seen in the future of our universe, would have a
characteristic wavelength (λmax) of about 22 billion light-years. The
CMB radiation continues to increase in wavelength as the universe
expands exponentially, doubling its size every 12.2 billion years.
After 850 billion years, the CMB thermal radiation will have a
characteristic wavelength longer than 22 billion light-years and will
become unimportant compared with the Gibbons and Hawking
radiation produced by the event horizons. At that point we should
see the temperature of the universe stop falling and become
constant at a Gibbons and Hawking temperature of about 7 × 10–31

K. That’s very cold, but still above absolute 0 K.
These ideas are actually testable. Gibbons and Hawking radiation

is also produced in the early inflationary phase of the universe. This
includes both electromagnetic radiation and gravitational radiation. If
such gravitational radiation from the early universe is eventually
detected via the imprint left on the polarization of the CMB, as
discussed in chapter 23, to my mind it would constitute an important
experimental verification of the Hawking radiation mechanism. These
gravitational waves are not made by moving bodies, as were the
gravitational waves detected by LIGO, these gravitational waves
would be produced by something different, the Hawking mechanism
—a quantum process. So this would be something new and exciting.

The Gibbons and Hawking radiation we expect to see in the far
future is ultimately bad for intelligent life. Freeman Dyson once
showed that intelligent life could last indefinitely on a finite reserve
of energy if it could dump its waste heat in an ever-colder
temperature bath. If I showed a movie in a theater at a temperature
of 300 K, using visible light photons, it would take a certain amount
of energy to show the movie. But suppose we slow everything down
in the theater. Suppose the movie was shown using infrared photons
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having twice the wavelength of visible photons; I could show the
same movie using half the energy (each photon would take half the
energy) but the movie would last twice as long (because the
photons have twice the wavelength). The wavelengths of the
photons in the thermal radiation in the theater would also be twice
as long, so the temperature in the theater would be 150 K instead of
the usual 300 K. Intelligent life could conserve energy by thinking
and communicating ever more S . . . L . . . O . . . W . . . L . . . Y.
One could even have an infinite number of thoughts using a finite
amount of energy by continuing to slow down one’s thinking. This is
allowed if one can dump one’s waste heat (which all biological
processes, including thought processes, generate) into the ever-
cooling microwave background, hibernating from time to time and
operating at ever lower temperatures as time goes on. As long as
the CMB continues to cool off toward absolute 0 K, that works. But
at 850 billion years, the universe will reach an equilibrium
temperature equal to the Gibbons and Hawking temperature, and its
temperature will remain constant after that. Then one cannot
operate at temperatures lower than that to save energy. One would
need refrigeration, which uses up the remaining energy very quickly.
Furthermore, the other galaxies will have fled beyond the event
horizon, leaving only a finite energy reserve at one’s disposal;
intelligent life begins to be in energy trouble and will ultimately die
out.

Here’s another trouble. At 1014 years, the stars fade as the last
low-mass stars run out of hydrogen fuel and die. The universe
becomes dark. Only stellar remnants are left—white dwarfs, neutron
stars, and black holes. Some planets may still circle them. But by
1017 years, enough close encounters of stars will have occurred to
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rip the planets from their orbits and fling them into interstellar
space.

At 1021 years, galactic-mass black holes form. Two-body
gravitational interactions slingshot some stars out of galaxies, while
the rest fall into the central black hole. Gravitational radiation causes
stars close to the black hole to spiral in.

By 1064 years (if it hasn’t happened already), according to
Hawking, protons should decay through a rare process of
temporarily falling inside a Planck-sized black hole (via the
uncertainty principle), and then having the black hole decay quickly
by Hawking radiation. The black hole does not conserve baryons
(protons or neutrons)—it does not remember whether it was made
of a proton or a positron—but it does remember its electric charge.
For that reason, a positron (which is lighter than the proton) can be
emitted as one of the decay products of the black hole into which
the proton has disappeared. As protons decay, we are left with
electrons and positrons as the most massive particles. Protons may
decay even earlier than this; perhaps on a timescale of 1034 years,
but it’s likely they would have decayed in any case by 1064 years.

At 10100 years, galactic-mass black holes evaporate via Hawking
radiation.

What happens after that? The standard picture physicists have is
that dark energy, which today is causing an exponential expansion of
the universe, represents a vacuum state with a constant positive
energy density (and a negative pressure). Steven Weinberg likens
our current situation to living in a valley slightly above sea level—our
altitude indicating the amount of dark energy present in the vacuum.
We have rolled to the bottom of this valley and are just sitting there.
The amount of energy in the vacuum—the dark energy—is not
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changing with time. This will keep the universe doubling in size
every 12.2 billion years for a very long time.

Given enough time, it would be likely that our vacuum state,
which causes dark energy, could quantum tunnel (through the valley
walls) into a lower energy state (of lower-altitude terrain beyond our
valley). This would cause a bubble of lower-density vacuum state to
form somewhere in our visible universe. The negative pressure
outside the bubble would be more negative than the pressure inside,
which would pull the bubble wall outward. After a short time, the
bubble wall would be traveling outward at nearly the speed of light.
It would expand forever. The laws of physics would be different
inside the bubble, and you would be killed when the bubble wall hit
you.

One can calculate the probability per unit time to quantum tunnel
out of the valley to a lower-altitude region outside. We could
possibly see bubbles of lower-density vacuum forming in as “little” as
10138 years due to a known instability in the Higgs vacuum. But
many physicists think the Higgs vacuum will be stabilized by higher-
energy effects. In that case, according to speculative calculations by
Andrei Linde, bubbles of lower density vacuum should start forming
only after 10^(10^34) years! These bubbles would form, and just
like the bubble universes in figure 23.3, they would never percolate
to fill the entire space. The ever-expanding vacuum state would
continue to double in size every 12.2 billion years and have a volume
that would increase endlessly—an ever-inflating sea punctuated by
forming bubbles. At late times, our universe would be like eternally
fizzing champagne.

Even more rarely, as Linde and Vilenkin have suggested, a
quantum fluctuation could cause the entire visible universe to jump
up to a high-vacuum energy density and create a new, rapidly
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inflating high-density inflationary universe. This would be like the
high-energy inflation we saw at the beginning of our universe and
would initiate a new multiverse. It might be 10^(10^120) years
before this happens!

Alternatively, we don’t live in a valley at all, but on a slope, and
we will slowly roll down to sea level. This is called slow-roll dark
energy. As Bharat Ratra, Jim Peebles, Zack Slepian, and I, and many
others, have explored, this would cause the amount of dark energy
to slowly dissipate over billions of years, rolling down ultimately to a
vacuum state of zero energy density. Just such a rolling down
occurred once before with inflation, where a very high-density dark
energy state rolled down to the low-energy vacuum that we see
today. That could occur again, allowing us to ultimately roll down to
sea level—a vacuum energy of zero. These scenarios can be
investigated by measuring the expansion history of the universe up
to now in detail. This allows us, using Einstein’s equations, to
measure the ratio of the pressure to energy in the dark energy, a
ratio we call w. If w turns out to be exactly –1, dynamically
equivalent to Einstein’s cosmological constant, that favors the
“trapped in a valley” scenario, and the dark energy will remain at its
present value, and the universe will keep doubling in size every 12.2
billion years forever. If w is less negative than –1, however, we will
roll slowly down to sea level, and the accelerated expansion should
eventually give way to an approximately linear expansion rate. The
universe will continue to expand forever but at a linear rate. In this
case the universe’s expansion goes like 1, 2, 3, 4, 5, 6, . . . with
time.

A radical proposal, by Robert Caldwell, Mark Kamionkowski, and
Nevin Weinberg, is that w could be more negative than –1. This is
called phantom energy. It would produce a vacuum energy that
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increased with time as the universe expanded, leading to a runaway
expansion and creating a singularity in the future (a Big Rip) that
would tear galaxies, stars, and planets apart in perhaps as little as a
trillion years. This “phantom” energy would require a negative
kinetic energy in the rolling motion of the field that controls dark
energy, which seems to me to be unlikely on physical grounds. That
scenario would make the dark energy we see today nothing like the
dark energy that was present earlier in inflation. So, although that
remains a possibility, it seems less likely to me than the other two
scenarios. But many physicists take “phantom energy” quite
seriously. 2

As discussed in chapter 23, the best estimate of the current value
of w (from the Planck satellite team using all available data,
including that from the Sloan Digital Sky Survey) is w0 = –1.008 ±
0.068. Remarkably, within the errors, this is consistent with the
simple value of –1 (approximating Einstein’s cosmological constant),
which corresponds to the model where we are sitting at the bottom
of a valley. This result strongly supports the general idea that dark
energy represents a vacuum state with positive energy and negative
pressure, but these observations are not yet able to truly distinguish
between models in which we are sitting still at the bottom of a valley
from those in which we are slowly rolling down (or up) a hill. In the
latter cases, w0 would be close to, but not exactly equal to –1,
slightly above or below it. If future precision measurements of w
show that it is unambiguously different from –1, we could learn
whether the slow-roll dark energy or phantom energy picture was
favored. But, if, as measurements continue to improve and the
errors continue to go down, we continue to be consistent with w0 =
–1 within the errors, we may well pronounce the “sitting at the
bottom of the valley” model triumphant. There are a number of



576

experimental programs either underway or proposed for the future
that can potentially lower the errors in w0 by more than an order of
magnitude; it is hoped these programs can illuminate the ultimate
fate of the universe.

Now you have our best predictions of what the universe is likely
to be doing in the future. But what about our future in the universe?
What’s likely to happen to us? How is our species Homo sapiens
likely to fare in the far future? This is a question we would very
much like to answer.

First, I would point out that we are living in a very habitable
epoch. The universe has cooled off enough to be habitable, carbon
and other elements essential to life have had enough time to form,
and the stars are shining nicely today, providing warmth and energy.
This is an epoch at which we might expect to find intelligent
observers. After the stars have faded, it will be much more difficult
for intelligent life. If we look at table 24.1, we find ourselves in a
habitable epoch. The Weak Anthropic Principle, an idea proposed by
Robert Dicke and later given its name and precise formulation by
Brandon Carter, says that intelligent observers should, of course,
expect to find themselves at habitable locations—in a habitable
epoch in the universe. (Logically, they couldn’t be alive to be asking
the question in an uninhabitable epoch!) In fact, we do find
ourselves in the middle of what looks like the most habitable epoch
in the universe.

But as the only intelligent observers we have encountered in the
universe so far, we would like to know how long our future longevity
as a species is likely to be. How might we think about this question?

In 1969, I visited the Berlin Wall, which separated the two
sectors of the city belonging to East and West Germany. People at
that time wondered how long the Berlin Wall would last. Some
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people thought it was a temporary aberration and would be gone
quickly. But others thought the wall would remain a permanent
feature of modern Europe.

Figure 24.1 shows a picture of me at the Wall in 1969. To
estimate the Wall’s future longevity, I decided to apply the
Copernican Principle. I remember thinking: I’m not special. My visit
is not special. I am just coming to Europe after college—it was
“Europe on 5 dollars a day” back then. I’m coming by to see the
Berlin Wall just because I’m in Berlin and the Wall happens to be
there. I could have seen it at any point in its history. But if my visit is
not special, my visit should be located at some random point
between the Wall’s beginning and its end. (The end comes either
when the Wall ends or when there is no one left alive to see it,
whichever comes first.) There should be a 50% chance, then, that I
am located somewhere in the middle half of its existence—in the
middle two quarters. If I were visiting at the beginning of that
middle 50%, then I would have been 1/4 of the way through its
history, with 3/4 still in the future. In this case, the Wall’s future
longevity would be 3 times its past longevity. In contrast, if I were at
the end of that middle 50%, 3/4 of its history would be past and 1/4
would remain in the future, making its future 1/3 as long as its past.
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FIGURE 24.1. Rich Gott at the Berlin Wall in 1969. My right foot is in East Berlin,
my left foot is in West Berlin, and the Berlin Wall is vertical behind me. Photo
credit: Collection of J. Richard Gott

I therefore reasoned that there was a 50% chance that I would
be between these two limits and that the future longevity of the Wall
would be between 1/3 and 3 times as long as its past (figure 24.2).
At the time of my visit, the Wall was 8 years old. While standing at
the Wall, I predicted to a friend, Chuck Allen, that the future
longevity of the Wall would be between 2.66 years and 24 years.
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FIGURE 24.2. The Copernican formula (50% confidence level).
Credit: J. Richard Gott
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Twenty years later I’m watching television and I call up my friend
and say: “Chuck, you remember that prediction I made about the
Berlin Wall? Well turn on your television, because NBC news anchor
Tom Brokaw is at the Wall now and it’s coming down today!” Chuck
did remember the prediction. The Berlin Wall had come down 20
years later, inside the range of 2.66 years to 24 years that I had
predicted. My visit was in the middle of the Cold War, so an atomic
bomb could have taken it (and me) out in the next millisecond. In
contrast, some famous walls, such as the Great Wall of China, have
lasted for thousands of years. My predicted range was rather narrow
but it still gave me the right answer.

Scientists generally prefer to make predictions that are more than
50% likely to be right. They like to make predictions that have a
95% chance of being correct. That is the usual 95% confidence level
used in scientific papers. How does this change the argument? When
applying the Copernican Principle, keep in mind that if your location
in time is not special, there is a 95% chance that you are
somewhere in the middle 95% of the period of observability of
whatever you are observing—that is, neither in the first 2.5% nor in
the last 2.5% (figure 24.3).

Expressed as a fraction, 2.5% is 1/40. If your observation falls at
the beginning of that middle 95%—only 2.5% from the start—then
1/40 of the history of what you are observing is past, and 39/40 of it
remains in the future. In this case, the future is 39 times as long as
the past. If you are only 2.5% from the end, then 39/40 of it is past
and 1/40 remains. The future is 1/39 as long as the past. If you are
in the middle 95%, between these two extremes (there is a 95%
chance of that), that makes its future between 1/39 and 39 times as
long as its past. Thus:
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the future longevity of whatever you are observing will be
between 1/39 of its past longevity and 39 times its past
longevity (with 95% certainty).

I decided I’d like to apply this to something important, to the
future of the human species, Homo sapiens. Our species is about
200,000 years old. That goes back to Mitochondrial Eve, in Africa,
from whom we are all descended. The formula would say with 95%
confidence that, if our location in the timeline of the history of our
species is not special, the future longevity of our species Homo
sapiens should be at least 5,100 more years (that’s 200,000/39) but
less than 7.8 million more years (that’s 200,000 × 39). 3 We do not
have actuarial data on other intelligent species (those able to ask
such questions), so arguably this is the best we can do. The range of
predicted future longevity is as large as this, because one wants to
be 95% certain of being correct. Yet many experts who offer their
own estimates make predictions outside this range. Some
apocalyptic predictions say we are likely to be extinct in less than
100 years. But if that were true, we would be very unlucky to be
located at the very end of human history. Some optimists think we
will go on to colonize the galaxy and last for trillions of years. But if
that were true, we would be very lucky to be located at the very
beginning of human history. Thus, even with its broad range, the
Copernican-based formula is still highly informative, limiting the
possibilities to a tighter range than those considered by many
others.
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FIGURE 24.3. The Copernican formula (95% confidence level).
Credit: J. Richard Gott
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Certainly everything we have learned in astronomy tells us that
we should take the Copernican Principle (that your location is not
likely to be special) seriously. We started out thinking that we
occupied a special place at the center of the universe. But then we
realized that ours was just one of a number of planets orbiting the
Sun. Then we found out that the Sun was just an ordinary star, not
at the center of our galaxy but orbiting at a random location about
halfway out. We learned that our galaxy was in an ordinary group of
galaxies in a run-of-the-mill supercluster of galaxies. The more we
have discovered, the less special our location has turned out to be.

The Copernican Principle is one of the most successful scientific
hypotheses of all time, proving itself over and over in a variety of
contexts. Christiaan Huygens used it to predict the distances to the
stars. He asked why the Sun should be the brightest light in the
universe. The stars, he reasoned, were just other suns like our Sun.
If the other stars were as intrinsically bright as the Sun (assuming
the Sun was not special), then the fact that the stars appear much
dimmer in the sky than the Sun must mean they are far away. He
figured that the brightest star in the sky, Sirius, was the closest.
From his estimated brightness of Sirius relative to the Sun, he
calculated it must be 27,664 times as far away as the Sun. He
actually got the distance right to within a factor of 20, a remarkable
accomplishment, given the large uncertainties involved. Huygens
correctly found that the distances between the stars were vast
compared to the size of our solar system.

When Hubble saw other galaxies receding from us equally in all
directions, he could have concluded that we were at a special place
at the center of a massive explosion. But after Copernicus, we were
not going to fall for that notion. With so many galaxies, we could not
be so lucky as to live in the one in the center. If it looked that way to



584

us, it must look the same way to observers in all galaxies—otherwise
we would be special. This led to the homogeneous, isotropic, Big
Bang models of general relativity. Gamow, Herman, and Alpher used
these to predict the existence of the CMB radiation 17 years before
its discovery by Penzias and Wilson. It was one of the greatest
predictions to be verified in the history of science. This success was
achieved in large measure by taking the Copernican Principle
seriously and then following wherever it would lead.

Interestingly, the total longevity of our species predicted by the
Copernican formula agrees remarkably well with the actual
longevities of other species on Earth. My 95% confidence prediction
for the total longevity of Homo sapiens was between 205,100 years
and 8 million years (that’s just the 200,000 years we have already
had plus the additional 5,100 to 7.8 million years we are likely to
have in the future). Homo erectus, our parent species, lasted 1.6
million years, and the Neanderthals lasted only about 300,000 years.
Mammal species have an average longevity of 2 million years, and
other groups of species on Earth have average longevities of
between 1 and 10 million years. Even the fearsome Tyrannosaurus
rex went extinct after existing for only 2.5 million years. It was
knocked out by an asteroid strike about 65 million years ago.

Keep in mind that my Copernican prediction is only based on our
past longevity as an intelligent species—that is, one that is self-
conscious and able to ask questions like this—a species able to do
algebra, as Neil would say. If we were really going to last another
trillion years, we would be very lucky to find ourselves at such an
early epoch in the history of our species, a mere 200,000 years from
the beginning and, furthermore, at just such an epoch that our past
longevity would predict a total longevity in line with other species. If
we were observing at some random location in that trillion year
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history, say, 400 billion years from now, we would already know that
our species had lasted far longer than other species and would
rightly project a long future longevity for ourselves as well. I would
be far more optimistic about our future if the human race were
already 400 million years old rather than 200,000 years old, our
actual observed longevity so far.

Homo sapiens could, in principle, have a far greater longevity
than other species simply because we are an intelligent species. But
we are still mammals, and we have a Copernican-predicted longevity
quite in line with the longevities of other mammals. Even though
mammals are much smarter than the average species, their
longevity is not appreciably longer, and hominids (like Homo erectus
and the Neanderthals) lasted no longer than typical mammal
species. Intelligence and longevity do not seem to be correlated.
This should give us pause.

Indeed, if we simply used actuarial data on other mammal
species to forecast our future longevity, we would find a future
longevity of between 50,600 years and 7.4 million years (with 95%
confidence). These limits are within the limits implied by the
Copernican Principle based only on our past longevity as an
intelligent species. As long as we stay on Earth, we are subject to
the same dangers that have caused other species to go extinct, and
the fact that we have been around only 200,000 years should make
us worry that our intelligence will not necessarily improve our fate
relative to other species. Einstein was very smart, but he did not last
longer than the rest of us. Intelligence may not be all that helpful for
species longevity.

Now you might think that’s fine. Sure, Homo sapiens, will go
extinct, but that’s okay, because we will give birth to an even more
intelligent species in the future to replace us. Darwin noted,
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however, that most species leave no descendant species at all. A few
species leave many descendant species; they propagate well. But
most species die off without progeny. In this regard, note that all
other species in our hominid family (including the Neanderthals,
Homo heidelbergensis, Homo erectus, Homo habilis, and
Australopithecus) have gone extinct. We are the only hominid
species left. The rodent family, by comparison, has 1,600 species
alive today. They are doing well and have many chances for survival.
In a wonderful book called After Man, Dougal Dixon speculated on
what might happen after another 50 million years of evolution, and it
was not to our liking. We humans were gone in a million years. Fifty
million years from now rabbits were still prevalent but they had
grown up to be as big as deer and were hunted by packs of ratlike
creatures, descended from present-day rodents. The scary thing
about this book and the future world it imagines is that it seems so
reasonable, and yet it’s clearly not what we would like to hear. None
of the animals left on Earth were intelligent observers, able to ask
questions like, “How long will my species last?” Of course the
chances are low that Dougal Dixon’s specific animal predictions will
come true, because there are many ways for evolution to proceed,
but the book points out that quite plausibly, most of these ways do
not include intelligent observers in the far future. Stephen Jay Gould
made a similar point, calling us “just one bauble” on the Christmas
tree of evolution.

The same Copernican argument applies to our entire intelligent
lineage: our species plus any intelligent species which might descend
from us in the future. We are the first intelligent species in our
lineage (able to ask questions like this), so the current age of our
entire intelligent lineage is only 200,000 years (only 1/65,000 of the
age of the universe) and, therefore, our entire intelligent lineage is
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not likely to go on forever, 4 and its future lifetime should have the
same limits as those we found for our species. We might well be the
only intelligent species in our lineage—given that we observe that
we are the first. This accords with Darwin’s observation that most
species leave no descendants when they go extinct.

There are some times you shouldn’t use the formula. Don’t use it
at a wedding one minute after the vows have been said to forecast
that the marriage has only 39 minutes left! You have been invited to
the wedding at a special time to witness its beginning. But most of
the time you can use the Copernican formula. Since I introduced it,
the formula has been tested many times and successfully predicted
future longevities of everything from Broadway plays and musicals,
to governments, to reigns of world leaders. 5 Another exception: do
not use it to estimate the future longevity of the universe. You may
live in a special (habitable) location, because you are an intelligent
observer. (Intelligent observers were not present in the hot early
universe and may die out when main sequence stars burn out.) But
among intelligent observers your location in spacetime should not be
special. In general, the Copernican formula works because out of all
the places for intelligent observers to be, there are by definition only
a few special places, and many nonspecial places. You are simply
likely to live in one of those many nonspecial places. Also, your
current observation is not likely to be in a special location relative to
the full array of observations made by intelligent observers.

We do not have actuarial data on the longevities of intelligent
species in the universe. We have no data on how long they may last.
But we do know our own past longevity as an intelligent species,
and we should not ignore that salient piece of data. The Copernican
formula tells us how to use that information to make a rough
estimate of our future longevity with 95% confidence.
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If you are not special, you should expect yourself to be born
somewhere randomly on the chronological list of human beings.
Approximately 70 billion people have been born in the past 200,000
years. The Copernican formula gives a 95% chance that the number
born in the future should be somewhere between 1.8 billion and 2.7
trillion. I found out from the referee of my 1993 Nature paper,
Brandon Carter of Anthropic Principle fame, that he and John Leslie
and Holgar Nielson had also pointed out that it was unlikely that you
were in the first tiny fraction of all human beings ever to be born.
Carter (and later Leslie elaborating on Carter’s work) used Bayesian
statistics to come to this conclusion, whereas Nielson had
independently arrived at the same conclusion using the idea that you
should occupy a random position on the chronological list of human
beings—like my own line of reasoning. I had found like-minded
colleagues.

You are likely to come from a country with a population higher
than the median. Half of the 190 countries in the world have
populations of less than 7 million. But since more people live in the
more populous countries, about 97% of all the people in the world
live in countries having populations above the median. Were you
born in a country with a population of more than 7 million? Just as
you are likely to live in a country with a population above the
median, you are likely to live in a high-population century. Indeed,
you live in a century whose population is the highest it has ever
been. You expect to live after some event (like the discovery of
agriculture) that caused the population to soar, but before some
event that causes the population to fall. You expect to live in a
population spike, where the population is larger than that in a
median century. This spike could occur at any random point in
human history. If you want to know how many people will live after
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you, ask how many have lived before. If you want to know how long
humanity will live in the future, ask how long it has lived in the past.

You are likely to live in an intelligent civilization that is above the
median population for intelligent species in the universe—for the
same reason that you are likely to live in a high-population country.
Most intelligent observers live in civilizations that are above the
median, and you are likely to be one of those many observers,
rather than among the few who come from civilizations that are
below the median in population. That means that our current
population on Earth is likely to be above the median population for
intelligent species in the universe. That’s not the usual situation in
science fiction stories, where a big galactic civilization of
extraterrestrials arrives to attack our puny Earth. Although this
makes good drama—we are David facing an extraterrestrial Goliath—
it does not fit the probabilities. We ourselves are likely to be one of
the more successful civilizations in terms of population! High-
technology civilizations are likely to have large populations, so we
may expect to be one of those.

In 2015, Fergus Simpson of the University of Barcelona pointed
out an interesting corollary: since we are likely to come from a
planet with a larger-than-median population, most planets inhabited
by intelligent observers are likely to be smaller than Earth. Thus,
searches for intelligent life, or any kind of life, should focus more
attention on planets smaller than Earth—where most of the
examples may lie.

We can also make a Copernican, 95% confidence level upper
limit for the mean longevity of radio-transmitting civilizations in the
galaxy, a value to plug into the Drake equation discussed in chapter
10. This is based on the idea that you are not likely to be special
among the intelligent observers living in radio-transmitting
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civilizations. You are likely to live in one of the longer-lived radio-
transmitting civilizations, because they contain more intelligent
observers over time. Also, you are unlikely to live at the start of our
radio-transmitting epoch. Still, a few radio-transmitting civilizations
can always be longer lived than we are, and they contribute to the
average. Imagine adding the civilizations to make one long timeline
whose length is equal to the total longevities of all civilizations added
together. Rank the radio-transmitting civilizations in order of
longevity, with the longest-lived radio-transmitting civilization at the
end of the long timeline. If you are not special, you should be
located randomly in that long timeline, and randomly within the
Homo sapiens time segment (giving the total longevity of our radio-
transmitting civilization). I was able to use this idea, and some fancy
algebra, to set a 95%-confidence upper limit on the mean longevity
of radio-transmitting civilizations: 12,000 years. If the mean
longevity were longer than that, my 1993 paper would appear either
unusually early in our radio-transmitting civilization, or unusually
early in the timeline of all radio-transmitting civilizations. This yields
a Copernican estimate you can plug into the Drake equation: LC <
12,000 years (with 95% confidence). Neil has used this estimate in
chapter 10.

If you think intelligent species typically evolve into intelligent
machine species or genetically engineered species, then you must
ask yourself—why am I not an intelligent machine? Why am I not
genetically engineered?

If you think intelligent species typically colonize their galaxy, then
ask yourself—why am I not a space colonist? In 1950, Enrico Fermi
asked a famous question about extraterrestrials: Where are they?
Why haven’t they colonized Earth already, long ago? The Copernican
Principle offers an answer to Fermi’s question: A significant fraction
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of all intelligent observers must still be sitting on their home planets
(otherwise you would be special). Colonization must not occur that
often. Importantly, this means that we are allowed to apply the
Drake equation in the first place: it estimates the number of
intelligent civilizations that arise independently on their home
planets. If colonization is not common, that is approximately equal
to the total number of extraterrestrial civilizations we will find.

Suppose you thought a priori that each of the following two
hypotheses was equally probable:

H1. Humans would stay on Earth until they went extinct.
H2. Humans would colonize 1.8 billion habitable planets in

the galaxy in the future.

Bayesian statistics says that you must multiply your prior
probabilities for hypotheses H1 and H2 by the likelihood of observing
what you are observing, given either H1 or H2. Under the H1
hypothesis that we stay on Earth, then there is a 100% likelihood
that you as a human being would observe that you were on Earth.
But if humans colonize 1.8 billion planets (i.e., if H2 is true), then as
a human being, there is only 1 chance in 1.8 billion that you would
find yourself on the first planet out of 1.8 billion that humans lived
on. Therefore, even if you viewed the odds as 1:1 initially that we
would colonize the galaxy rather than stay on Earth, after
considering that you are living on Earth, Bayesian statistics would
require you to reevaluate the odds as 1.8 billion:1 against
colonization of the galaxy. My Copernican argument would simply
say that if you are not special, there is only one chance in 1.8 billion
that you would find yourself in the first 1/(1.8 billion) of all planets
inhabited by humans and therefore only one chance in 1.8 billion
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that we would go on to colonize 1.8 billion planets, given that you
are on the first one. Nevertheless, our colonizing a few more planets
in the future, starting with Mars, would not be that improbable and
could give us more chances to survive. We should be doing that
quickly, while we still have a space program.

The goal of the human spaceflight program should be to improve
our survival prospects by colonizing space. This could be achieved at
reasonable cost. For example, you could begin by sending eight
astronauts, both men and women, to Mars, and they could multiply
there using indigenous materials. You just have to find a handful of
astronauts who would be willing to take a one-way trip to Mars and
stay there to have their children and grandchildren—people who
would rather be founders of a Martian civilization than return to be
celebrities back on Earth. It is easy to find such daring people. Story
Musgrave, the astronaut I know best, once told me that he would
happily volunteer for a one-way trip to Mars. The Mars One group
has found a hundred serious candidates who would like to be Mars
colonists. Frozen egg and sperm cells could be taken along for
genetic diversity. (In this way, even though only a handful of
astronauts would actually be sent, many people born on Earth could
ultimately have descendants on Mars.) Mars has reasonable gravity
(1/3 that of Earth), an atmosphere, water, and all the chemicals
necessary for life—unlike the Moon. The atmosphere is CO2, from
which oxygen for breathing can be obtained, and water is plentiful in
permafrost and in Mar’s polar caps. Radiation levels could be
tolerable if the colony were placed 10 meters below ground and the
colonists made only brief forays on the surface. Our ancestors lived
in caves—so could our Martian colonists. Our orbiters have even
found some nice cave mouths on Mars worth checking out.
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I have shown that placing such a colony on Mars would require
us to put into orbit only as much mass in the future as we have
already done in the past, not too much to ask for. According to
Robert Zubrin, taking eight astronauts to Mars and supplying them
with emergency return vehicles (hopefully not to be used) would
require launching 500 tons into low-Earth orbit. From there they
would be launched on a trajectory to Mars and aerobrake into its
atmosphere prior to landing. According to Gerard O’Neill, a space
colony requires as little as 50 tons per person to create a “life in a
closed system” biosphere. Delivering these 400 tons to the Martian
surface requires launching about 2,000 tons into low-Earth orbit.
Thus a self-supporting Mars colony of eight colonists would require
launching 2,500 tons into low-Earth orbit. By comparison, the Saturn
V rockets of the Apollo program and the U.S. Space Shuttles have
launched over 10,000 tons into low-Earth orbit, with the Russian and
Chinese human spaceflight programs adding even more. NASA is
currently considering building a heavy-lift vehicle capable of putting
a payload of 130 tons into low-Earth orbit (a Saturn V-class vehicle).
Twenty launches would be sufficient to build the colony (compared
with the 18 Saturn V rockets that were built for the Apollo program).
Four of these rockets could be constructed at a time in the vertical
assembly building at the Kennedy Space Flight Center. If it takes a
decade to develop such a rocket, and four are launched in every 26-
month launch cycle, the Mars colony could be completed in an
additional 9 years. Starting now, the colony would take only 19 years
to finish. The human spaceflight program is 55 years old as I write
this; the Copernican Principle suggests that funding for the human
spaceflight program has at a 50% chance of lasting for at least
another 55 years—long enough to establish a Mars colony. Asking
for such a Mars colony is not unreasonable. Elon Musk, head of
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Space X, is interested in privately funded efforts to colonize Mars. I
once shared a podium with him at a Mars conference organized by
Robert Zubrin. I told of my reasons the human race should want to
colonize Mars in the near future, and Elon told how he would go
about doing it! Neil has made the case for going to Mars in his book
Space Chronicles. Planting a colony on Mars would change the
course of world history, in fact you couldn’t even call it “world”
history anymore! Stephen Hawking has recently added his voice,
saying, in an interview with bigthink.com: “I believe that the long-
term future of the human race must be in space. It will be difficult
enough to avoid disaster on planet Earth in the next hundred years,
let alone the next thousand, or million. The human race shouldn’t
have all its eggs in one basket, or on one planet. Let’s hope we can
avoid dropping the basket until we have spread the load.”

If Martian couples had four children on average, the population
could double every 30 years and reach 8 million after 600 years.
(Small populations can grow—the entire original aboriginal
population of Australia is thought to have descended from as few as
30 individuals who landed there by raft from Indonesia 50,000 years
ago. This population had grown to between 300,000 and 1 million by
the time of European settlement.) If you are worried about the funds
for the space program being canceled, planting a self-supporting
colony is just what you want. Don’t send astronauts to Mars and
then bring them all back to Earth. Instead, leave them there, where
they can help our survival prospects. Colonizing Mars would give our
species two chances instead of one, and might as much as double
our long-term survival prospects. It would be a life insurance policy
against any catastrophe that might overcome us on Earth, from
climatological disasters, to asteroid strikes, to surprise epidemics. It
might also double our chances of ever getting to Alpha Centauri.
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Colonies can found other colonies. The first words spoken on the
Moon were in English not because England sent astronauts to the
Moon but because they founded a colony in North America that did.

If we look around, we can see the universe showing us what we
should be doing. We live on a tiny speck in a vast universe. The
universe tells us: spread out and increase your habitat to improve
your survival prospects. We live on a planet littered with the bones
of extinct species, and the age of our species is tiny relative to that
of the universe as a whole. We should spread out before we die out.
We have a space program only about half a century old that is
capable of sending us to other planets. We should make the wisest
possible use of it before it is gone. Will we venture out, or turn our
backs on the universe? The fact that we are having this conversation
on Earth is a warning that there is a significant chance that we will
end up trapped on Earth.

FIGURE 24.4. The Apollo 11 liftoff.
Photo credit: J. Richard Gott

In the summer of 1969, I did more than just visit the Berlin Wall.
I visited Stonehenge. At that time, Stonehenge was about 3,870
years old. It’s still there! I also went to Florida specifically to see the
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Saturn V rocket take off, sending Neil Armstrong, Buzz Aldrin, and
Michael Collins to the Moon on Apollo 11. At that time, Saturn V
rockets had been taking off for the Moon for 7 months. In another
3.5 years, such Saturn V launches to the Moon would be over. The
sight of the Saturn V rocket launching was spectacular (see my
photo of it in figure 24.4). As it rose higher and higher, it looked like
some magic sword, trailing a plume of fire much longer than itself. I
had never seen anything like it. A crowd of about a million people
had come to see it. They watched the launch in perfect silence, but
after the rocket disappeared into a high layer of cirrus clouds, the
crowd let loose with tremendous cheering. Colonizing space is what
we should be doing.

Our intelligence gives us great potential, the potential to colonize
the galaxy and become a supercivilization, but most intelligent
species must not achieve this—or you would be special to find
yourself still a member of a one-planet species. We control energy
sources that are far less powerful than that of our own Sun. We are
not very powerful, and we have not been around for very long. But
we are intelligent creatures and we have learned a lot about the
universe and the laws that govern it—how long ago it started, how
its galaxies and stars and planets formed. It is a stunning
accomplishment whose story we have told here.
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APPENDIX 1

DERIVATION OF E=MC2

Suppose you had a laboratory with a particle moving slowly from left
to right inside it with velocity v much, much less than c (i.e., v <<
c). Newton’s laws will apply, and if the particle has a mass m, it will
have, according to Newton, a momentum P = mv pointed toward
the right. The particle gives off two photons, each of energy E = hν0

in opposite directions: one to the right and one to the left. The
particle loses an amount of energy ΔE = 2hν0 , equal to the energy
the particle sees carried off by the two photons. Einstein showed
that the momentum of a photon is equal to its energy divided by the
speed of light c. The particle sees the two photons carry away equal
amounts of momentum but in opposite directions, making the total
momentum carried off by the two photons zero as seen by the
particle. The particle “thinks” it is at rest (by Einstein’s first
postulate), and it gives off two equal photons in opposite directions.
By symmetry, a particle at rest that gives off two equal-frequency
photons in opposite directions stays at rest. The recoils from the two
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photons cancel out. The particle’s worldline remains straight: it does
not change in velocity. (Refer to figure 18.4.)

The photon going to the right will eventually slam into the right
wall of the lab. It hits the wall, and the wall is pushed a tiny bit
toward the right. This is the effect of radiation pressure: the wall
absorbs the momentum of the photon, and this pushes the wall to
the right. An observer sitting on the right wall will see the photon
headed to the right hitting the right wall with a frequency that is
higher than the emitted frequency (it will be shifted toward the blue
end of the spectrum), because the particle is approaching the right
wall. This is an instance of the Doppler effect. In contrast, an
observer sitting on the left wall of the lab will see a redshifted
photon traveling to the left hit the left wall with a lower frequency
than emitted, because the particle is going away from him. A higher-
frequency (bluer) photon carries a larger momentum than does a
lower-frequency (redder) photon. So, the right wall receives a harder
kick (to the right) than the left wall receives (to the left). The two
kicks do not cancel out, and the lab receives an overall kick to the
right. Let’s calculate how big that overall kick is.

The time between wave crests in the emitted photons (seen as
light waves) as measured by the particle is Δt0. The time between
the emission of the two wave crests, Δt0, is equal to 1 over the
frequency of the light ν0 as seen by the particle. If the light has a
frequency of 100 cycles per second; for example, the time between
wave crests is 1/100 of a second. Thus, Δt0 = 1/ν0. Let v be the
velocity of the particle relative to the lab. The particle’s clock will tick
(as measured in the rest frame of the lab) at a rate of √[1 – (v2/c2)]
that of the lab clock, as we have discussed. But in this calculation,
we are supposing that v << c, and so we are going to ignore all
terms that are of order (v2/c2), and only keep terms that are of
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order (v/c). (For example, if v/c = 10–4, corresponding to the 30
km/sec orbital speed of Earth around the Sun, then v2/c2 = 10–8;
this second term is so small that it can be neglected relative to the
first.) Since we are working in the limit where v << c, the rate at
which the particle’s clock ticks is essentially the same as the rate at
which the lab clock ticks. That means that the time interval between
ticks as seen by the particle (Δt0) and the lab (Δt′) are essentially
the same, because the particle is moving so slowly.

An observer at rest with respect to the lab, therefore, also sees a
time Δt′ = Δt0 = 1/ν0 pass between the emission of the first wave
crest and the next wave crest emitted by the particle. (Refer to
figure 18.4, where the time interval Δt′ is shown as a vertical dashed
line.) At the moment the next wave crest is emitted toward the right
by the particle, it lags behind the first wave crest by a distance d =
(c – v)Δt′. That is equal to the distance the light beam has traveled
in the time Δt′ (which is cΔt′) minus the distance the particle has
traveled (which is vΔt′). The two wave crests are both traveling to
the right at speed c (by Einstein’s second postulate); thus they travel
in parallel, and the distance between them remains fixed at d = (c –
v)Δt′. The wavelength λR of the light seen by an observer sitting on
the right wall of the lab is equal to this distance between wave
crests, so λR = (c – v)Δt′. The spacetime diagram in figure 18.4
illustrates the thought experiment. This distance λR between wave
crests is measured at an instant of lab time (along a horizontal line
in the spacetime diagram.)

The time interval between the arrival of the two wave crests at
the right wall is therefore ΔtR = λR/c = (c – v)Δt′/c, and the
frequency of the photon going to the right is observed to be νR = 1/
ΔtR = c/[(c – v)Δt′  ] = ν0c/(c – v). Now for v << c, the quantity c/(c
– v) is approximately [1 + (v/c)] keeping only terms of first order in
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v/c. (For example, if v/c = 0.00001, c/(c – v) = 1/0.99999 =
1.00001 to high accuracy—try it on your calculator). Thus, an
observer sitting on the right wall of the lab sees the photon headed
to the right hit the wall with frequency νR = ν0 [1 + (v/c)]. He sees a
higher frequency than the emitted frequency ν0 by a factor of [1 +
(v/c)] due to the Doppler effect, where v is the velocity of the
particle. This is the standard Doppler-shift formula for blueshifted
light hitting the right wall of the lab from a particle moving at low
velocity v toward the wall.

When the photon going to the right hits the right wall, it imparts
a rightward momentum of hνR/c = hν0[1 + (v/c)]/c to the wall.

The particle also emits a photon traveling to the left. It will
eventually hit the left wall. An observer sitting on the left wall of the
lab sees this photon going to the left hit this wall with a frequency of
νL= ν0[1 – (v/c)]. The sign of the velocity in the formula is reversed,
because the observer on the left wall sees the particle moving away
from him with a velocity v. He sees a frequency that is lower than
the emitted frequency because of the Doppler effect. The total
rightward momentum imparted to the lab by the two photons is
therefore equal to the amount of momentum imparted by the
rightward photon, hν0[1 + (v/c)]/c, minus the momentum imparted
by the leftward particle, hν0[1 – (v/c)]/c, which is going in the
opposite direction. This gives 2hν0(v/c2) for the total rightward
momentum imparted by the two photons to the lab. This total
rightward momentum is imparted to the lab because the high-
frequency (bluer) photon traveling toward the right imparts a bigger
punch, which is not offset by the smaller punch imparted by the low-
frequency (redder) photon traveling toward the left. Now 2hν0 = ΔE,
is just the energy given off by the particle in the form of the two
photons. So the rightward momentum acquired by the lab is ΔE v/c2.
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The factor v/c2 comes from a factor v/c due to the Doppler shifts
and a factor of 1/c due to the ratio of momentum to energy carried
by photons.

Conservation of momentum requires that the amount of
rightward momentum acquired by the lab be equal to the rightward
momentum lost by the particle. The rightward momentum of the
particle is mv (since v << c, Newton’s formula for momentum is
accurate). Because the particle’s velocity is unchanged, the only way
for it to lose rightward momentum mv is for it to lose mass. Its loss
of rightward momentum must be vΔm where Δm is the mass lost by
the particle.

Setting ΔEv/c2 = vΔm, we find ΔE/c2 = Δm. The small velocity v
of the particle cancels out! As long as v << c, the answer does not
depend on v. Multiplying both sides of the equation by c2 gives ΔE =
Δmc2. The particle loses mass. The amount of mass lost, Δm,
multiplied by c2 is equal to the amount of energy in the two photons
given off, ΔE. Get rid of the delta (Δ) signs on both sides of the
equation, and you have E = mc2. The energy given off by the two
photons is equal to the mass lost by the particle multiplied by c2.
When the particle loses mass, it gives off an amount of energy given
by E = mc2. Many books explain the significance of the equation and
how it works, but they don’t tell you how you could derive it. Now
you know how to do it.
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APPENDIX 2

BEKENSTEIN, ENTROPY
OF BLACK HOLES,
AND INFORMATION

Current hard drives 6 inches in diameter can store about 5 terabytes
or 4 × 1013 bits of information. How many bits of information could
you possibly pack into a hard drive 6 inches in diameter? First, since
this is a thought experiment, make it spherical to pack the most
volume inside that diameter—it’s about the size of a grapefruit with
a radius of 7.5 cm. Bekenstein showed that a black hole had a finite
entropy proportional to the area of its event horizon. In the end, the
entropy of a black hole horizon (S) turned out to be exactly ¼ of the
area of the event horizon when the area is measured in Planck
lengths squared (the exact value being obtained ultimately by
Hawking). Measured in Planck units, the surface area of a black hole
of radius 7.5 cm is 4π(7.5 cm/1.6 × 10–33 cm)2 = 2.76 × 1068. One
quarter of that is an entropy of S = 6.9 × 1067. A specific amount of
entropy (increase in disorder) corresponds to a specific amount of
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destruction of information. The number of bits of information
corresponding to an entropy S is S/ln 2. The natural logarithm of 2
(denoted as “ln 2” in the formula) is 0.69. The 2 comes into it,
because one bit of information is the answer to one yes-or-no
question, which has 2 possibilities. (A game of 20 questions, which
answers 20 yes-or-no questions, gives you 20 bits of information. If
you know I’m thinking of a number between 1 and 220, which is
about a million, your first question would be: is it in the upper half?
Keep dividing the allowed region by two. After 20 questions, you will
have guessed my number.) The creation of a black hole of radius 7.5
cm is thus an increase in the disorder of the universe equal to the
destruction of 1068 bits of information. There are 2^(10^68)
different ways to make such a black hole, taking 1068 bits of
information to describe, and the information on what the black hole
was made of is lost when the black hole forms. If the 7.5-cm-radius
hard drive contained more than 1068 bits of information, more than
1068 bits of information would be lost if you collapsed it (i.e.,
crushed it to make it smaller and smaller until it formed a black hole
smaller than 7.5 cm). But that’s not allowed, because if more than
1068 bits of information are lost when a black hole forms, the black
hole that forms must have a radius of more than 7.5 cm. That’s a
contradiction. So what actually happens is that as you try to pack
more and more information into your hard drive with a fixed radius
of 7.5 cm, its mass will increase, until, when it contains 1068 bits of
information, its mass will be 8.4 times the mass of Earth, and it will
collapse to form a black hole. Thus 1068 bits of information (1.16 ×
1058 gigabytes) is the upper limit on the amount of information a 6-
inch-diameter hard drive could store.
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NOTES

CHAPTER 1: THE SIZE AND SCALE OF THE UNIVERSE

1. Technically, a megabyte is 220 = 1,048,576 bytes, and a gigabyte is 230 =
1,073,741,824 bytes. But colloquially, these are rounded to an even million and a
billion.

CHAPTER 3: NEWTON’S LAWS

1. D. T. Whiteside, “The Prehistory of the ‘Principia’ from 1664 to 1686.” Notes and
Records of the Royal Society of London 45, no. 1 (January 1991): 38.

CHAPTER 9: WHY PLUTO IS NOT A PLANET

1. Comet Hale-Bopp, for example, 35 kilometers in diameter, was discovered only
2 years before its closest approach to the Sun. If it had been headed for us, it
would have hit Earth with the explosive force of 4 billion megatons of TNT, more
than 60 million times the most powerful H-bomb ever exploded.

CHAPTER 10: THE SEARCH FOR LIFE IN THE GALAXY

1. Perhaps there is a get-out-of-jail-free card for the screenwriter. At the
beginning, Jodie says there are 400 billion stars in our galaxy alone, but at the end
she says there are millions of civilizations out there. Did that mean, out there in
the galaxy, as anyone might have thought, or could it have meant out there in the
universe? Let’s try that out. There are 130 billion galaxies in the visible universe
(Jodie is looking for extraterrestrials, and you can at most only look in the visible
universe). In that case, you would have to multiply 0.0000004 civilizations by 130
billion, that gives 52,000 civilizations in the visible universe, not millions. So even
that won’t work.
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CHAPTER 14: THE EXPANSION OF THE UNIVERSE

1. That historical limit has just now been extended by the European Space
Agency’s Gaia spacecraft, currently making the best measurements of stellar
parallaxes, which will allow the distances of stars to tens of thousands of light-
years to be determined.

CHAPTER 17: EINSTEIN’S ROAD TO RELATIVITY

1. It is important that scientific hypotheses be falsifiable, according to the criteria
established by philosopher Karl Popper.
2. I observe an astronaut’s light clock as illustrated in Figure 17.1. In the general
case, the astronaut moves past me at a velocity v. I observe the astronaut’s light
clock as she moves by me from left to right. While the light makes progress of 1
foot along the diagonal line, the rocket makes progress of v/c feet from left to
right. During this time, the light makes vertical progress of √[1 – (v2/c2)]. That’s
because a right triangle with a diagonal hypotenuse of length 1, a horizontal side
of length v/c, and a vertical side of √[1 – (v2/c2)] satisfies Pythagoras’s theorem
for right triangles. The square of √[1 – (v2/c2)] is just [1 – (v2/c2)], and that plus
(v2/c2) equals 12. Pythagoras is happy. During the time the light beam in my clock
is moving 1 foot upward, I see her light beam making upward progress of only
√[1 – (v2/c2)] feet. If I age 10 years, she ages 10 years times √[1 – (v2/c2)].

CHAPTER 18: IMPLICATIONS OF SPECIAL RELATIVITY

1. J. Richard Gott, “Will We Travel Back (or Forward) in Time?” Time magazine,
April 10, 2000, 68–70.

CHAPTER 19: EINSTEIN’S GENERAL THEORY OF RELATIVITY

1. The Riemann curvature tensor Rαβγδ in four dimensions has 256 components.
Each of its indices (superscripts or subscripts) α, β, γ, and δ can take on any of
four values corresponding to one of the four dimensions of spacetime (t, x, y, and
z). That gives 4 × 4 × 4 × 4 = 256 components.
2. Tμν is the stress energy tensor, which describes the stuff at a particular location
in spacetime: mass-energy density, pressure, stress, energy flux, and momentum
flux. The metric gμν (which we have encountered before: in flat spacetime, it is

given by ds2 = –dt2 + dx2 + dy2 + dz2) tells us how distances in space and time
are measured. Rμν and R can be calculated from the components of the Riemann
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curvature tensor. The tensors in Einstein’s equations have two indices that can
take on any of four values and so represent 4 × 4 = 16 equations. Ten of these
equations are independent.
3. From a lecture at the University of Glasgow, June 20, 1933. Published in Albert
Einstein, The Origins of the Theory of Relativity, reprinted in Mein Weltbild
(Amsterdam: Querido Verlag, 1934), 138; and in Ideas and Opinions (reprint, New
York: Broadway Books, 1995), 289–290.

CHAPTER 20: BLACK HOLES

1. Private communication from Don Page, Hawking’s student. He has recounted
this story in “Hawking Radiation and Black Hole Thermodynamics” Don N. Page,
Alberta University, September 2004. Published in New Journal of Physics 7 (2005):
203, ALBERTA-THY-18-04, DOI: 10.1088/1367-2630/7/1/203, e-Print: hep-
th/0409024 | PDF, This account is in accord with Hawking’s own account of the
events in his book, A Brief History of Time, 99–105.

CHAPTER 22: THE SHAPE OF THE UNIVERSE
AND THE BIG BANG

1. Mark Alpert and I investigated how general relativity would work in Flatland. We
found that the geometry around a point mass looks conical, and that distant
objects would not attract one another in Flatland, because empty space is locally
flat (i.e., a cone can be made out of a flat piece of paper by cutting out a slice and
taping the edges together). This work on Flatland would eventually inspire my
work on cosmic strings. To get an exact solution for a cosmic string, all I had to do
was add a vertical coordinate to our exact Flatland solution for a point mass. In
this case, our exploration of a fanciful world led to some solutions of interest in the
real world. The fact that point masses in Flatland do not gravitationally attract one
another would make aggregating mass to form planets in Flatland more difficult.
2. This concept was updated by A. Dewdney in his 1984 book Planiverse. In 2007,
an animated movie version of Flatland starred Martin Sheen and Kristen Bell, who
voiced the characters of Arthur Square and his granddaughter Hex, a hexagon.
One of my mentors from my undergraduate days at Harvard, Thomas Banchoff,
added illuminating mathematical commentary to the movie as an extra feature on
the DVD.

CHAPTER 23: INFLATION AND RECENT DEVELOPMENTS
IN COSMOLOGY

1. In my 1982 Nature paper, I said, “our Universe is one of the normal vacuum
bubbles.”
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2. In that same paper, following Sidney Coleman’s work on bubble formation, I
identified quantum tunneling as the process that would create the bubble
universes: “Thus we can see the formation of our Universe as a quantum
tunneling event.”
3. The title of Hawking’s 1982 paper was “The Development of Irregularities in a
Single Bubble Inflationary Universe” and included references to the papers by
Linde, Albrecht, and Steinhardt, and me, among others. The events of that year
are recounted in Physics News in 1982, published by the American Institute of
Physics, which used a key diagram from my paper on its cover.

CHAPTER 24: OUR FUTURE IN THE UNIVERSE

1. I describe all this in great detail in my book, The Cosmic Web (2016).
2. I have discussed these three scenarios, w > –1, w = –1, and w < –1, and their
implications, in even more detail in The Cosmic Web.
3. I published this in the scientific journal Nature on May 27, 1993, in a paper
titled “Implications of the Copernican Principle for our Future Prospects.”
4. Is our intelligent lineage (Homo sapiens and its intelligent descendants) likely to
last forever? Our intelligent lineage has been around for 200,000 years. That is
very short relative to the age of the universe, 1 part in 65,000. As our intelligent
lineage grows older, the ratio of its age to the age of the universe must approach
1; if our intelligent lineage lasts forever, most of its observers must find its age to
be of the same order of magnitude as the universe itself. You don’t observe that,
so that would make you special. We can quantify this idea. Imagine plotting a two-
dimensional diagram where the vertical coordinate y represents the age of the
universe when our intelligent lineage starts, and the horizontal coordinate x
represents the age of the universe when you observe. Each point in the plane thus
represents a possible observation by you. But there are constraints. Both ages x
and y are positive (limiting your observation to the upper right quadrant of the
plane). Since your observation must occur after our intelligent lineage starts, it
must be true that x > y. That limits your observation to half of that quadrant or
1/8 of the entire plane—the east to northeast octant of the plane. You can
visualize this as a 45°-wide region fanning out from the origin to infinity—since we
are assuming our intelligent lineage lasts forever. Your observation point (with the
values of x and y that you observe) could be a point anywhere in this 45°-wide
fan. If your observation is not special, there should be only a 1/45 chance your
point of observation lies within 1° of the bounding diagonal line x = y, for
example. But in fact, you are even closer to that diagonal line. You observe x = (1
+ [1/65,000]) y. That (x, y) point, measured from the origin, is only 0.00044°
from the upper edge (the line x = y). The probability of being that close to the
edge by chance if an observation is not special is P = 0.00044°/45° = 10–5. Thus,
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if our intelligent lineage were to last forever, and your observation is not special, it
would be highly unlikely (a probability of only 10–5) for you to find our intelligent
lineage only 1/65,000 as old as the universe itself, or less. The Copernican
Principle says that it is highly unlikely (P = 10–5) for you to find yourself in a
situation where your location is special to one part in 100,000 (in this case in an
intelligent lineage that lasts forever.) Thus, the Copernican Principle, in accord with
common sense, tells us that it is highly unlikely (P = 10–5) that our intelligent
lineage will last forever. If it has an end, the Copernican formula predicts (with
95% confidence) when that end will be.
5. The Copernican formula can be tested. For example, on the date of publication
of my paper, there were 44 plays and musicals open on Broadway. Those that had
been open only a short time tended to close after a short time: for instance,
Marisol, which had been open for 7 days, closed after another 10 days. That’s
within a factor of 39, in agreement with my prediction. The formula worked just as
well for long-running plays. The famous musical The Fantastics had been open for
12,077 days and closed after another 3,153 days, again within a factor of 39.
Overall, of the plays and musicals on my original list that have closed, I have
gotten 42 out of 42 correct, with two left to be decided. I could even be wrong
about those two and still get at least 95% right.

As of the same date there were 313 world leaders in power—heads of state
and heads of government of independent countries. Most are out of power now; if
none remaining in power continues in office past age 100, the success rate for the
formula will be more than 94% (extraordinarily close to the expected 95%). In
agreement with Copernican expectations, Henry Bienen and Nicholas van de Walle
concluded in their book Of Time and Power (after a detailed statistical analysis of
2,256 world leaders): “The length of time a leader has been in power is a very
good indicator of how long that leader will stay in power. Of all the variables
examined it is the predictor that gives the most confidence.”

On September 30, 1993, in Nature, P. T. Landsberg, J. N. Dewynne, and C. P.
Please used my formula to predict how long the Conservative government in
Britain would continue in power. They estimated with 95% confidence that, having
been in power for 14 years, it would continue for at least 4.3 more months but
less than 546 more years. It went out of power 3.6 years later, in agreement with
the prediction.

I used the United Nations actuarial tables to calculate that if every person in
the world in 1993 had applied my formula to calculate their future longevity, then
for 96% of those people, the formula would have proven correct.
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Philosophers Bradley Montond and Brian Kierland defended my core thesis in a
2006 article in The Philosophical Monthly. They argued that my formula can be
used to forecast future longevity in any timescale-free problem, or in cases where
the timescale is not known empirically. Any probability problem can be given a
Bayesian formulation. Bayesian reasoning explains how you should revise your
prior views when new data become available. My Copernican formula is equivalent
to adopting what is called a vague (Jeffreys) Bayesian prior (also called a public
policy prior, because it is designed for anyone to use). You then revise your prior
views after considering the past longevity you have observed. This type of prior
view is agnostic, weighting each order of magnitude of total longevity equally. If
you do not have actuarial data on intelligent species (i.e., ones able to ask
questions like this), this is arguably the best you can do, and you get exactly my
Copernican formula results. Any observer can apply it, and among such intelligent
observers, you should not be special.
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